分析 根據(jù)勾股定理的逆定理可以證明這個(gè)三角形是直角三角形,然后利用三角形面積公式求出三角形面積.
解答 解:∵a2+b2=(2$\sqrt{3}$-1)2+(2$\sqrt{3}$+1)2=26,
c2=($\sqrt{26}$)2=26,
∴a2+b2=c2,
∴∠C=90°,
∴三角形是直角三角形.
這個(gè)三角形面積=$\frac{1}{2}$ab=$\frac{1}{2}$$•(2\sqrt{3}-1)•(2\sqrt{3}+1)$=$\frac{11}{2}$.
點(diǎn)評(píng) 本題考查勾股定理逆定理以及三角形面積公式,會(huì)利用勾股定理逆定理判斷三角形是直角三角形是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2^{2}}{a}$+c | B. | $\frac{-^{2}}{4a}$+c | C. | m | D. | c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com