20.材料一:如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個(gè)量之間的同一關(guān)系.例如:101=10,d(10)=1;
材料二:勞格數(shù)有如下運(yùn)算性質(zhì):若m、n為正數(shù),則d(mn)=d(m)+d(n)
(1)根據(jù)勞格數(shù)的定義,填空:d(102)=2,d(10-2)=-2;
(2)若d(2)=0.301,求d(4)+d(16)的值;
(3)已知d(3)=2a+b,d(9)=3a+2b+c,d(27)=6a+2b+c,證明:a=b=c.

分析 (1)原式利用題中的新定義計(jì)算即可得到結(jié)果;
(2)原式利用題中的新定義變形,將已知等式代入計(jì)算即可求出值;
(3)已知等式利用題中新定義化簡(jiǎn),即可得證.

解答 解:(1)根據(jù)題意得:d(102)=2,d(10-2)=-2;
(2)∵d(2)=0.301,
∴原式=2d(2)+4d(2)=6d(2)=1.806;
(3)已知等式整理得:d(3)=2a+b,
d(9)=2d(3)=4a+2b=3a+2b+c,即a=c,
d(27)=d(3)+d(9)=2a+b+3a+2b+c=6a+2b+c,即a=b,
則a=b=c,
故答案為:(1)2;-2.

點(diǎn)評(píng) 此題考查了整式的混合運(yùn)算,弄清題中的新定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知實(shí)數(shù)x,y,z滿足$\sqrt{x-1}$+$\sqrt{y-2}$+$\sqrt{z}$=$\frac{1}{2}(x+y+z)$,則xyz的值為( 。
A.6B.4C.3D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知如圖:△ABC和△DAE中,AB=AD,∠BAD=∠BCE=135°,BC的延長(zhǎng)線交DE于點(diǎn)F,BF⊥DE.寫出線段DE、CE、BC之間的一個(gè)等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知直線y1=2x+1與拋物線y2=ax2+bx+c,拋物線y2與y軸交于點(diǎn)A(0,5),與x軸分別交于B(1,0),C(5,0)兩點(diǎn).
(1)求拋物線的解析式并在同一坐標(biāo)系中畫出直線和拋物線的示意圖;
(2)結(jié)合圖象回答:
①y2≥0時(shí),x的取值范圍;
②0<x<5時(shí),y2的取值范圍;
③y2≥y1時(shí),x的取值范圍;
④關(guān)x于的方程ax2+bx+c=k有兩個(gè)不等實(shí)根,k的取值范圍是什么?
(3)將拋物線在x軸下方部分沿x軸翻折到軸上方后,B,C間的部分向左平移n(n>2)個(gè)單位后得到的圖象記為圖象G,同時(shí)將y1向上平移n個(gè)單位,請(qǐng)結(jié)合圖象回答:當(dāng)平移后的直線與圖象有公共點(diǎn)時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.解方程
(1)x2+4x-2=0;
(2)3(x-2)2=x(x-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.南開中學(xué)舉行了首屆“南開故事會(huì)”講故事比賽,有12名學(xué)生參加了決賽,他們決賽的最終成績(jī)各不相同,其中的一名學(xué)生要想知道自己是否進(jìn)入前6名,不僅要了解自己的成績(jī),還要了解這12名學(xué)生成績(jī)的( 。
A.眾數(shù)B.方差C.平均數(shù)D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算:$\sqrt{16}$$+(\frac{1}{2})^{-2}$×cos60°-tan45°-12016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:
(1)$\frac{\sqrt{5}×\sqrt{21}}{\sqrt{15}}$-14$\sqrt{\frac{1}{7}}$-$\root{3}{-8}$
(2)$\sqrt{12}$-3×$\sqrt{\frac{1}{3}}$+$\root{3}{-8}$-(π+1)0×($\frac{1}{\sqrt{3}}$)-1
(3)($\sqrt{3}$-$\sqrt{5}$)2-($\sqrt{3}$+$\sqrt{5}$)($\sqrt{3}$-$\sqrt{5}$)
(4)$\sqrt{1{3}^{2}-1{2}^{2}}$-$\root{3}{-27}$+(3-$\sqrt{3}$)(3+$\sqrt{3}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.假設(shè)如圖的方格紙中,每個(gè)小正方形的面積是2,則圖中的四條線段中,長(zhǎng)度是無(wú)理數(shù)的有(  )條.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案