【題目】如圖,在等腰直角三角形ABC中,ABAC2,∠BAC90°,點(diǎn)DAC的中點(diǎn),點(diǎn)PBC邊上的動點(diǎn),連接PA、PD.則PA+PD的最小值為( 。

A.B.C.D.3

【答案】C

【解析】

找出A點(diǎn)關(guān)于BC的對稱點(diǎn)A,連接ADBCP,則AD就是PA+PD的最小值,求出即可.

解:找出A點(diǎn)關(guān)于BC的對稱點(diǎn)A,連接ADBCP,

PAPA,

PA+PDPA′+PDAD,

AD就是PA+PD的最小值.

連接AC,

ABAC2,∠BAC90°,

AA垂直平分BC

∴∠CAA45°,

∴△AAC是等腰三角形,

∴∠ACA90°,ACAC2,

ADDCAC1,

RtADC中,AD,即PA+PD的最小值為

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC,點(diǎn)P在邊AB上,點(diǎn)D、Q分別為邊BC上的點(diǎn),線段AD的延長線與線段PQ的延長線交于點(diǎn)F,連接CPAF于點(diǎn)E,若∠BPF=APC,FD=FQ

1)如圖1,求證:AFCP;

2)如圖2,作∠AFP的平分線FMAB于點(diǎn)M,交BC于點(diǎn)N,若FN=MN,求證:

3)在(2)的條件下,連接DMMQ,分別交PC于點(diǎn)GH,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(4,0).

(1)求拋物線的函數(shù)解析式;

(2)如圖,將拋物線沿x軸翻折得到拋物線,拋物線y軸交于點(diǎn)C,點(diǎn)D是線段BC上的一個(gè)動點(diǎn),過點(diǎn)DDEy軸交拋物線于點(diǎn)E,求線段DE的長度的最大值;

(3)在(2)的條件下,當(dāng)線段DE處于長度最大值位置時(shí),作線段BC的垂直平分線交DE于點(diǎn)F,垂足為H,點(diǎn)P是拋物線上一動點(diǎn),P與直線BC相切,且SPSDFH=2π,求滿足條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點(diǎn),E為AB上一個(gè)動點(diǎn),將△ABC沿直線DE折疊,A,C的對應(yīng)點(diǎn)分別為,交BC于點(diǎn)F,若△BEF為直角三角形,則BE的長度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了接受省藝術(shù)特色學(xué)校的驗(yàn)收,對義務(wù)教育的七、八、九三個(gè)年級學(xué)生舉行了書法大賽,賽后對三個(gè)年級的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

請解答下列問題:

1)請補(bǔ)全兩幅統(tǒng)計(jì)圖;

2)獲得一等獎(jiǎng)的同學(xué)有來自七年級,有來自八年級,其余同學(xué)均來自九年級.現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加市內(nèi)書法大賽,請你通過列表或畫樹狀圖,求所選兩人中既有八年級同學(xué)又有九年級同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有6個(gè)小三角形和1個(gè)正六邊形;第②個(gè)圖案中有10個(gè)小三角形和2個(gè)正六邊形;第③個(gè)圖案中有14個(gè)小三角形和3個(gè)正六邊形;;按此規(guī)律排列下去,已知一個(gè)小三角形的面積為a,一個(gè)正六邊形的面積為b,則第⑧個(gè)圖案中所有的小三角形和正六邊形的面積之和為____________(結(jié)果用含ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(1),下列結(jié)論:其中正確的個(gè)數(shù)是(  )

①a0;

②b0;

③c0;

;

⑤a+b+c0

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2x3x軸的交點(diǎn)為A、D(AD的右側(cè)),與y軸的交點(diǎn)為C.

(1)直接寫出AD、C三點(diǎn)的坐標(biāo);

(2)若點(diǎn)M在拋物線上,使得MAD的面積與CAD的面積相等,求點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、CP四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案