分析 在Rt△ACD中利用勾股定理可求AC2,同理在Rt△ABD中利用勾股定理可求BC2,而AB=AD+BD,易求AC2+BC2=AB2,從而可知△ABC是直角三角形.
解答 解:是,理由如下:
∵CD⊥AB,CD=12,AD=16,BD=9,
∴AC2=CD2+AD2=400,
又∵CD⊥AB,AD=16,BD=9,
∴BC2=CD2+BD2=225,
∵AB=AD+BD=25,
∴AB2=625,
∴AC2+BC2=625=AB2,
∴△ABC是直角三角形.
點(diǎn)評 本題考查勾股定理、勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-xy是單項(xiàng)式 | B. | ab沒有系數(shù) | ||
C. | -5是一次一項(xiàng)式 | D. | -a2b+ab-abc2是四次三項(xiàng)式 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com