【題目】如圖,在斜坡上按水平距離間隔50米架設(shè)電纜,塔柱上固定電纜的位置,離塔柱底部的距離均為20米.若以點(diǎn)為原點(diǎn),以水平地面所在的直線為軸,建立如圖所示的坐標(biāo)系,已知斜坡所在直線的解析式為,兩端掛起的電纜下垂近似成二次項(xiàng)系數(shù)為拋物線的形狀.

1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;

2)求電纜近似成的拋物線的解析式;

3)小明說(shuō):在拋物線頂點(diǎn)處,下垂的電纜在豎直方向上與斜坡的距離最近。你是否認(rèn)同?請(qǐng)計(jì)算說(shuō)明。

【答案】1,;(2;(3)不認(rèn)同,見(jiàn)解析.

【解析】

1)直接由題意即可得到答案.

2)設(shè)拋物線的解析式為,將點(diǎn)A0,20),C50,30)代入求解可得;

3)先求得拋物線的頂點(diǎn),設(shè)為拋物線上一點(diǎn),過(guò)點(diǎn)軸的垂線,交斜坡于點(diǎn),交軸一點(diǎn),列出的解析式可得出MN最小值時(shí)x的值與拋物線頂點(diǎn)的比較.

解:(1)由題意易知P點(diǎn)坐標(biāo)為(0,20),Q點(diǎn)坐標(biāo)為(50,30.

2)設(shè)拋物線的函數(shù)解析式為

代入,得

解得

拋物線的函數(shù)解析式為

3)不認(rèn)同.

拋物線的頂點(diǎn)為

如圖,設(shè)為拋物線上一點(diǎn),過(guò)點(diǎn)軸的垂線,交斜坡于點(diǎn),交軸一點(diǎn)

設(shè)點(diǎn),則

當(dāng)時(shí),有最小值,此時(shí)下垂的電纜在豎直方向上斜坡的距離最近.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)與一次函數(shù),令W=.

(1)若的函數(shù)圖像交于x軸上的同一點(diǎn).

①求的值;

②當(dāng)為何值時(shí),W的值最小,試求出該最小值;

(2)當(dāng)時(shí),W隨x的增大而減小.

①求的取值范圍;

②求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,,

1】求的度數(shù)

2】如圖,若把變成點(diǎn)FDA的延長(zhǎng)線上,,其它條件不變,求的度數(shù);

3】如圖,若把變成平分,其它條件不變,的大小是否變化,并請(qǐng)說(shuō)明理由.(此題9分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與AB重合的一個(gè)動(dòng)點(diǎn),點(diǎn)Qy軸上的一個(gè)動(dòng)點(diǎn).

1)請(qǐng)直接寫出ak,b的值及關(guān)于x的不等式ax2kx2的解集;

2)當(dāng)點(diǎn)P在直線AB上方時(shí),請(qǐng)求出△PAB面積的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

3)是否存在以P,Q,AB為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,ABAC3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax-2x+c(a≠0)x軸,y軸分別交于點(diǎn)A,BC三點(diǎn),已知點(diǎn)(-2,0),C(0,-8),點(diǎn)D是拋物線的頂點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)如圖,拋物線的對(duì)稱軸與x軸交于點(diǎn)E,第四象限的拋物線上有一點(diǎn)P,將△EB直線EP折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'落在拋物線的對(duì)稱軸上,求點(diǎn)P的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PAPB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案