【題目】在平面直角坐標系中,對于點Pmn)和點Qx,y).給出如下定義:若 ,則稱點Q為點P的“伴隨點”.例如:點(1,2)的“伴隨點”為點(5,0).

(1)若點Q(﹣2,﹣4)是一次函數(shù)ykx+2圖象上點P的“伴隨點”,求k的值.

(2)已知點Pmn)在拋物線C1y上,設(shè)點P的“伴隨點”Qxy)的運動軌跡為C2

①直接寫出C2對應的函數(shù)關(guān)系式.

②拋物線C1的頂點為A,與x軸的交點為B(非原點),試判斷在x軸上是否存在點M,使得以A、B、QM為頂點的四邊形是平行四邊形?若存在,求點M的坐標;若不存在,說明理由.

③若點P的橫坐標滿足﹣2≤ma時,點Q的縱坐標y滿足﹣3≤y≤1,直接寫出a的取值范圍.

【答案】(1);(2) yx2﹣3x+6;②見解析;③2≤a≤6.

【解析】

(1)根據(jù)伴隨點定義可求k的值

(2)根據(jù)伴隨點的定義可求C2的解析式

先求A,B坐標,以A、B、Q、M為頂點的四邊形是平行四邊形,則分三類討論,根據(jù)平行四邊形的性質(zhì)可求M點坐標

xm+4可得 2≤xa+4,且拋物線頂點坐標為(6,﹣3),﹣3≤y≤1可得6≤a+4≤10,可求a的取值范圍.

解(1)設(shè)Px,kx+2)

根據(jù)題意得:

解得:

(2)①根據(jù)題意可得

C2的解析式:,

②∵拋物線C1

B(4,0),A(2,﹣1)

∵以A、B、Q、M為頂點的四邊形是平行四邊形

∴若BA為邊,BM為邊,則ABMQAQBM

QA的縱坐標相同

解得:

,

AQBM,A(4,0)

,

AB為邊,BM為對角線,

∴對角線AQBM互相平分且交點在x軸上

Q點縱坐標為1

解得x1=2,x2=10

AQ中點橫坐標為62,且AQBM互相平分

M(8,0)或(0,0)

BM為邊,AB為對角線,

AB的中點ABMQ互相平分

Q

MQ的中點為

M,

∴綜上所述M,(0,0),( 8,0)

,.

③∵xm+4,﹣2≤ma

2≤x≤4+a

C2的解析式:

∴頂點坐標為(6,﹣3)

﹣3≤y≤1

∴當y=1時,x=210

6≤4+a≤10

2≤a≤6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,C=90°,DBC邊的中點,BD=2,tanB=

1)求ADAB的長;

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將函數(shù)yxbb為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y|xb|b為常數(shù))的圖象

1)當b0時,在同一直角坐標系中分別畫出函數(shù)y|xb|的圖象,并利用這兩個圖象回答:x取什么值時,|x|大?

2)若函數(shù)y|xb|b為常數(shù))的圖象在直線y1下方的點的橫坐標x滿足0x3,直接寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PT與⊙O相交于點T,直線PO與⊙O相交于A,B兩點.已知∠PTA=∠B.

(1)求證:PT是⊙O的切線;

(2)若PT=6,PA=4,求⊙O的半徑;

(3)若PT=TB=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=m(x+3)2+ny=m(x﹣2)2+n+1交于點A.過點Ax軸的平行線,分別交兩條拋物線于點B、C(點B在點C左側(cè)),則線段BC的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種飲料,每瓶進價為10元.經(jīng)市場調(diào)查表明,當售價在12元到14元之間(含12元,14元)浮動時,日均銷售y(瓶)與售價x(元)之間的關(guān)系可近似的看作一次函數(shù),且當x=10時,y=500;x=12,y=400.

(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)應將售價定為每瓶多少元時,所得日均毛利潤最大?最大日均毛利潤為多少元?(每瓶毛利潤=每瓶售價﹣每瓶進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,AO,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:

(1)OA_____

(2)作出AOB的平分線并在其上標出一個點Q,使OQ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊△ABC內(nèi)一點,且PA=6,PC=8,PB=10,若△APB繞點A逆時針旋轉(zhuǎn)60°后,得到△AP′C,則∠APC=_____°.

查看答案和解析>>

同步練習冊答案