【題目】如圖:在ABC中,∠BAC =,ADBCD,CE平分∠ACB,交ADG,交ABE,EFBCF,求證:四邊形AEFG是菱形.

【答案】證明見解析.

【解析】分析:根據(jù)三角形內(nèi)角和定理求出∠B=∠CAD,根據(jù)角平分線性質(zhì)求出AE=EF,由勾股定理求出AC=CF,證△ACG≌△FCG,推出∠CAD=∠CFG,得出∠B=∠CFG,推出GF∥AB,AD∥EF,得出平行四邊形,根據(jù)菱形的判定判斷即可.

詳解:證明:∵ADBC,

∴∠ADB=90°,

∵∠BAC=90°,

∴∠B+BAD=90°,BAD+CAD=90°,

∴∠B=CAD,

CE平分∠ACB,EFBC,BAC=90°(EACA),

AE=EF(角平分線上的點(diǎn)到角兩邊的距離相等),

CE=CE,∴由勾股定理得:AC=CF,

∵△ACGFCG

∴△ACG≌△FCG,

∴∠CAD=CFG,

∵∠B=CAD,

∴∠B=CFG,

GFAB,

ADBC,EFBC,

ADEF,

AGEF,AEGF,

∴四邊形AEFG是平行四邊形,

AE=EF,

∴平行四邊形AEFG是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知兩點(diǎn)在數(shù)軸上,點(diǎn)在原點(diǎn)的左邊,表示的數(shù)為-15,點(diǎn)在原點(diǎn)的右邊,且.點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)向右運(yùn)動(dòng)(點(diǎn),點(diǎn)同時(shí)出發(fā)).

1)數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是______,點(diǎn)到點(diǎn)的距離是______;

2)經(jīng)過幾秒,原點(diǎn)是線段的中點(diǎn)?

3)經(jīng)過幾秒,點(diǎn)分別到點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).

1)填空:a   ,b   ,c   ;

2)先化簡(jiǎn),再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象相交于A、B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)在x軸上取關(guān)于原點(diǎn)對(duì)稱的P、Q兩點(diǎn),(P點(diǎn)在Q點(diǎn)的右邊),試問四邊形AQBP一定是一個(gè)什么形狀的四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于點(diǎn)Am,3),B(-6,n),與x軸交于點(diǎn)C

(1)求直線的解析式;

(2)若點(diǎn)Px軸上,且,求點(diǎn)P的坐 標(biāo)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).

(1)求拋物線的解析式;

(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);

(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求ACQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC中,AB=6,AN=2,BAC的平分線交BC于點(diǎn)DMAD上的動(dòng)點(diǎn),則BM+MN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)ORtABC斜邊AB上的一點(diǎn),以OA為半徑的⊙OBC相切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.

(1)求證:AD平分∠BAC;

(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOP=∠BOP15°,PCOA,PDOA,若PC4,則PD的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案