【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若點E是AC的中點,判斷BE與AC的位置關(guān)系,并說明理由;
(3)若△ABE是等邊三角形,AD=,求對角線AC的長.
【答案】(1)證明見解析;(2)BE⊥AC;(3).
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據(jù)平行線的判定得出AD∥BC,根據(jù)平行四邊形的判定推出即可;
(2)求出AD=DC,根據(jù)菱形的判定得出四邊形ABCD是菱形,根據(jù)等腰三角形的性質(zhì)得出即可;
(3)根據(jù)等邊三角形的性質(zhì)得出AB=AE,∠BAC=60°,求出∠DCE=∠BAE=60°,求出CD=2EC,設CE=x,則AB=DC=AE=2x,根據(jù)勾股定理得出方程,求出x,即可得出答案.
試題解析:(1)證明:∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;
(2)解:BE⊥AC,理由是:∵DE⊥AC,E為AC的中點,∴AD=DC,∵四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形,∴AB=BC,∵E為AC的中點,∴BE⊥AC;
(3)解:∵△ABE是等邊三角形,∴AB=AE,∠BAC=60°,∵AB∥DC,∴∠DCE=∠BAE=60°,∵∠DEC=90°,∴∠CDE=30°,∴CD=2EC,設CE=x,則AB=DC=AE=2x,由勾股定理得:DE2=AD2﹣AE2=DC2﹣CE2,即,解得:x=(負數(shù)舍去),即CE=,AE=,∴AC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點A作⊙O的切線并在其上取一點C,連接OC交⊙O于點D,BD的延長線交AC于E,連接AD.
(1)求證:△CDE∽△CAD;
(2)若AB=2,AC=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題:探索發(fā)現(xiàn)規(guī)律拓展應用題
(1)如圖①,∠CEF=90°,點B在射線EF上,AB∥CD,若∠ABE=130°,求∠C的度數(shù);
(2)如圖②,把“∠CEF=90°”改為“∠CEF=120°”,點B在射線EF上,AB∥CD.猜想∠ABE與∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( )
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.BC=DC,∠A=∠D
D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E,F(xiàn)分別在AB,DC上,且ED⊥DB,F(xiàn)B⊥BD.
(1)求證:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列不等式的變形正確的是( )
A.若am>bm,則a>b
B.若am2>bm2 , 則a>b
C.若a>b,則am2>bm2
D.若a>b且ab>0,則 >
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各因式分解正確的是( )
A.﹣x2+(﹣2)2=(x﹣2)(x+2)
B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2
D.x2﹣4x=x(x+2)(x﹣2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com