如圖,方格紙上的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形.在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(-2,-1).
(1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B1C1并寫出點A1的坐標(biāo);
(2)把△ABC繞點C按順時針旋轉(zhuǎn)90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點A2的坐標(biāo).
(1)如圖所示:△A1B1C1,點A1的坐標(biāo)是(-2,2).

(2)如圖所示:△A2B2C,點A2的坐標(biāo)是(6,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點P的坐標(biāo)為(2,3),那么點P關(guān)于原點的對稱點Q的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△AOB繞點O逆時針旋轉(zhuǎn)80°到△OCD的位置,已知∠AOB=30°,則∠AOD等于(  )
A.50°B.40°C.30°D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),△ABC的頂點坐標(biāo)分別為A(-2,3),B(-5,0),C(-1,1),畫出△ABC關(guān)于原點的對稱圖形,并寫出對稱點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

邊長為
13
的菱形OACB在平面直角坐標(biāo)系中的位置如圖所示,將該菱形繞其對角線的交點順時針旋轉(zhuǎn)90°后,再向右平移3個單位,則兩次變換后點C對應(yīng)點C′的坐標(biāo)為( 。
A.(2,4)B.(2,5)C.(5,2)D.(6,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC,D是BC的中點,將三角板中的90°角的頂點繞D點在△ABC內(nèi)旋轉(zhuǎn),角的兩邊分別與AB、AC交于E、F,且點E、F不與A、B、C三點重合.
(1)如果∠A=90°,觀察并探索,當(dāng)E、F點位置變化時,BE、EF、CF三條線段中有否有一條線段始終最長?請指出,并給予證明.
(2)請分別∠A>90°、∠A<90°兩種情況考察BE、EF、CF三條線段中有否有一條線段始終最長?如果有,請指出最長的線段,但不需證明;如果沒有,請畫草圖舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將△ABC繞點A逆時針旋轉(zhuǎn)80°得到△AB′C′.若∠BAC=50°,則∠CAB′的度數(shù)為( 。
A.30°B.40°C.50°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC4兩點,且∠DAE=42°,將△ADC繞A順時針旋轉(zhuǎn)右u°后,得到△AFB,連結(jié)EF,則下列結(jié)論正確y個數(shù)有( 。
①∠EAF=42°;②△EBF為等腰直角三角形;③EA平分∠CEF;④BE2+CD2=ED2
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)作出將△ABC繞點O順時針方向旋轉(zhuǎn)180°后的△A2B2C2

查看答案和解析>>

同步練習(xí)冊答案