【題目】(1)數(shù)軸上有A、B兩點,若A點對應(yīng)的數(shù)是﹣2,且A、B兩點間的距離為3,則點B對應(yīng)的數(shù)是________;
(2)已知線段AB=12cm,直線AB上有一點C,且BC=4cm,M是AC的中點,AM的長為________;
(3)已知∠AOB=3∠BOC,∠BOC=30°,則∠AOC=________;
(4)已知等腰三角形兩邊長為17、8,求三角形的周長.
【答案】(1)-5或1;(2)8cm或4cm;(3)120°或60°;(4)42.
【解析】
(1)點A對應(yīng)的數(shù)是-2,且A、B兩點的距離為3,設(shè)點B對應(yīng)的數(shù)為x,則有|-2-x|=3,繼而即可求出答案;
(2)考慮到A、B、C三點之間的位置關(guān)系的多種可能,即點C在線段AB的延長線上或點C在線段AB上;
(3)分兩種情況討論:當OC在∠AOB的外側(cè)時,當OC在∠AOB的內(nèi)側(cè)時,利用角的和差關(guān)系進行計算;
(4)根據(jù)8和17可分別作等腰三角形的腰,結(jié)合三邊關(guān)系定理,分別討論求解.
(1)設(shè)點B對應(yīng)的數(shù)為x,
由題意得:|-2-x|=3,
解得:x=-5或1,
故答案為:-5或1;
(2)①當點C在線段AB的延長線上時,AC=AB+BC=16cm,
∵M是線段AC的中點,
∴AM=AC=8cm;
②當點C在線段AB上時,AC=AB-BC=8cm,
M是線段AC的中點,
∴AM=AC=4cm.
故答案為:8cm或4cm;
(3)∵∠BOC=30°,∠AOB=3∠BOC,
∴∠AOB=3×30°=90°,
①當OC在∠AOB的外側(cè)時,
∠AOC=∠AOB+∠BOC=90°+30°=120°;
②當OC在∠AOB的內(nèi)側(cè)時,
∠AOC=∠AOB-∠BOC=90°-30°=60°,
故答案為:120°或60°;
(4)由題意可知,
若三邊長為17、17、8,此時8+17>17,周長為42;
若三邊長為17、8、8,此時8+8<17,無法圍成三角形,此情況舍去;
故等腰三角形的周長為42.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2,
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸并寫出對稱軸;
(4)△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一前夕,某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進價比B品牌服裝每套進價多25元,用2000元購進A種服裝數(shù)量是用750元購進B種服裝數(shù)量的2倍.
求A、B兩種品牌服裝每套進價分別為多少元?
該服裝A品牌每套售價為130元,B品牌每套售價為95元,服裝店老板決定,購進B品牌服裝的數(shù)量比購進A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進A品牌的服裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線的頂點A的坐標為(1,4),拋物線與x軸相交于B、C兩點,與y軸交于點E(0,3).
(1)求拋物線的表達式;
(2)已知點F(0,﹣3),在拋物線的對稱軸上是否存在一點G,使得EG+FG最小,如果存在,求出點G的坐標;如果不存在,請說明理由.
(3)如圖2,連接AB,若點P是線段OE上的一動點,過點P作線段AB的垂線,分別與線段AB、拋物線相交于點M、N(點M、N都在拋物線對稱軸的右側(cè)),當MN最大時,求△PON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:
如圖1,△ABC中,∠ACB=90°,點D在AB上,且∠BAC=2∠DCB,求證:AC=AD.
小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:
方法1:如圖2,作AE平分∠CAB,與CD相交于點E.
方法2:如圖3,作∠DCF=∠DCB,與AB相交于點F.
(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.
用學(xué)過的知識或參考小明的方法,解決下面的問題:
(2)如圖4,△ABC中,點D在AB上,點E在BC上,且∠BDE=2∠ABC,點F在BD上,且∠AFE=∠BAC,延長DC、FE,相交于點G,且∠DGF=∠BDE.
①在圖中找出與∠DEF相等的角,并加以證明;
②若AB=kDF,猜想線段DE與DB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點,點E是正方形內(nèi)一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°得DF,連接AE、CF.則線段OF長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加學(xué)校組織的智力競答活動,競賽中有兩道單選題完全不會.這兩道單選題各有A.B.C三個選項,第一道單選答案是B.第二道單選答案是C.最終兩道題小明隨機各寫了一個答案
(1)小明答對第一道題的概率是 .
(2)請用樹狀圖或者列表求出小明兩道題都答對的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線與軸、軸分別交于點,,拋物線經(jīng)過點,將點向右平移5個單位長度,得到點.
(1)求點的坐標;
(2)求拋物線的對稱軸;
(3)若拋物線與線段恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張正面標有數(shù)字,背面顏色一樣的卡片,正面朝下放在桌面上,小紅從中隨機抽取一張卡片記下數(shù)字,再從余下的卡片中隨機抽取一張卡片記下數(shù)字.
(1)第一次抽到數(shù)字2的卡片的概率是 ;
(2)設(shè)第一次抽到的數(shù)字為,第二次抽到的數(shù)字為,點的坐標為,請用樹狀圖或列表法求點在第三象限的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com