【題目】如圖1,拋物線(xiàn)的頂點(diǎn)A的坐標(biāo)為(1,4),拋物線(xiàn)與x軸相交于B、C兩點(diǎn),y軸交于點(diǎn)E0,3).

1)求拋物線(xiàn)的表達(dá)式;

2)已知點(diǎn)F0,﹣3),在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在一點(diǎn)G使得EG+FG最小,如果存在,求出點(diǎn)G的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由

3)如圖2,連接AB若點(diǎn)P是線(xiàn)段OE上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作線(xiàn)段AB的垂線(xiàn),分別與線(xiàn)段AB、拋物線(xiàn)相交于點(diǎn)M、N(點(diǎn)M、N都在拋物線(xiàn)對(duì)稱(chēng)軸的右側(cè)),當(dāng)MN最大時(shí)求△PON的面積

【答案】1y=﹣x2+2x+3;(2)存在,G1,0);(32

【解析】

(1)根據(jù)頂點(diǎn)式可求得拋物線(xiàn)的表達(dá)式;

(2)根據(jù)軸對(duì)稱(chēng)的最短路徑問(wèn)題,作E關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)E′,連接E′F交對(duì)稱(chēng)軸于G,此時(shí)EG+FG的值最小,先求E′F的解析式,它與對(duì)稱(chēng)軸的交點(diǎn)就是所求的點(diǎn)G;

(3)如圖2,先利用待定系數(shù)法求AB的解析式,過(guò)NNHx軸于H,交ABQ,設(shè)N(m,﹣m2+2m+3),Q(m,﹣2m+6)(1<m<3),表示NQ=﹣m2+4m﹣3,證明QMN∽△ADB,列比例式可得MN的表達(dá)式,根據(jù)配方法可得當(dāng)m=2時(shí),MN有最大值,證明NGP∽△ADB,同理得PG的長(zhǎng),從而得OP的長(zhǎng),根據(jù)三角形的面積公式可得結(jié)論,并將m=2代入計(jì)算即可.

(1)設(shè)拋物線(xiàn)的表達(dá)式為:y=a(x﹣1)2+4,

(0,3)代入得:3=a(0﹣1)2+4,

a=﹣1,

∴拋物線(xiàn)的表達(dá)式為:y=﹣(x﹣1)2+4=﹣x2+2x+3;

(2)存在,如圖1,作E關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)E',連接E'F交對(duì)稱(chēng)軸于G,此時(shí)EG+FG的值最小.

E(0,3),E'(2,3),

設(shè)EF的解析式為y=k′x+b′,

F(0,﹣3),E'(2,3)分別代入,得,解得,

所以E'F的解析式為:y=3x﹣3,

當(dāng)x=1時(shí),y=3×1﹣3=0,G(1,0);

(3)如圖2.

設(shè)AB的解析式為y=k″x+b″,

A(1,4),B(3,0)分別代入,得,解得,

所以AB的解析式為:y=﹣2x+6,

過(guò)NNHx軸于H,交ABQ,

設(shè)N(m,﹣m2+2m+3),則Q(m,﹣2m+6),(1<m<3),

NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,

ADNH,∴∠DAB=NQM,

∵∠ADB=QMN=90°,∴△QMN∽△ADB,

,

MN(m﹣2)2

0,

∴當(dāng)m=2時(shí),MN有最大值;

過(guò)NNGy軸于G,

∵∠GPN=ABD,NGP=ADB=90°,∴△NGP∽△ADB,

,PGNGm,

OP=OG﹣PG=﹣m2+2m+3m=﹣m2m+3,

SPONOPGN(﹣m2m+3)m,

當(dāng)m=2時(shí),SPON2(﹣4+3+3)=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在過(guò)直線(xiàn)AB外一點(diǎn)P作直線(xiàn)AB的平行線(xiàn)時(shí),可以按如下步驟進(jìn)行:①在直線(xiàn)AB上任取兩點(diǎn)C,D;②分別以點(diǎn)P,D為圓心,CDPC為半徑畫(huà)弧,兩弧交于點(diǎn)E;③作直線(xiàn)PE,則PEAB.在上面作圖過(guò)程中,PEAB的依據(jù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A2,1.

1)求點(diǎn)B的坐標(biāo);

2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線(xiàn)的函數(shù)表達(dá)式;

3)在(2)所求的拋物線(xiàn)上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)畫(huà)片《小豬佩奇》分靡全球,受到孩子們的喜愛(ài).現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽?zhuān)?/span>D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.

(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為 ;

(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請(qǐng)用列表或畫(huà)樹(shù)狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小玲家在某24層樓的頂樓,對(duì)面新建了一幢28米高的圖書(shū)館,小玲在樓頂處看圖書(shū)館樓頂處和樓底處的俯角分別是,則兩樓之間的距離是__________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家為了實(shí)現(xiàn)2020年全面脫貧目標(biāo),實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,采取異地搬遷,產(chǎn)業(yè)扶持等措施.使貧困戶(hù)的生活條件得到改善,生活質(zhì)量明顯提高.某旗縣為了全面了解貧困縣對(duì)扶貧工作的滿(mǎn)意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個(gè)類(lèi)別:A.非常滿(mǎn)意;B.滿(mǎn)意;C.基本滿(mǎn)意;D.不滿(mǎn)意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).

根據(jù)以上信息,解答下列問(wèn)題:

(1)將圖1補(bǔ)充完整;

(2)通過(guò)分析,貧困戶(hù)對(duì)扶貧工作的滿(mǎn)意度(A、B、C類(lèi)視為滿(mǎn)意)是  

(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶(hù)、乙鄉(xiāng)鎮(zhèn)2戶(hù)共5戶(hù)貧困戶(hù)中,隨機(jī)抽取兩戶(hù)進(jìn)行滿(mǎn)意度回訪(fǎng),求這兩戶(hù)貧困戶(hù)恰好都是同一鄉(xiāng)鎮(zhèn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)數(shù)軸上有A、B兩點(diǎn),若A點(diǎn)對(duì)應(yīng)的數(shù)是﹣2,且A、B兩點(diǎn)間的距離為3,則點(diǎn)B對(duì)應(yīng)的數(shù)是________;

(2)已知線(xiàn)段AB=12cm,直線(xiàn)AB上有一點(diǎn)C,且BC=4cm,MAC的中點(diǎn),AM的長(zhǎng)為________;

(3)已知∠AOB=3BOC,BOC=30°,則∠AOC=________;

(4)已知等腰三角形兩邊長(zhǎng)為17、8,求三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(探索發(fā)現(xiàn))

如圖1,在正方形ABCD中,點(diǎn)MN分別是邊BC,CD上的點(diǎn),∠MAN45°,若將DAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°BAG位置,可得MAN≌△MAG,若MCN的周長(zhǎng)為8,則正方形ABCD的邊長(zhǎng)為   

2)(類(lèi)比延伸)

如圖2,在四邊形ABCD中,ABAD,∠BAD120°,∠B+D180°,點(diǎn)M,N分別在邊BC,CD上的點(diǎn),∠MAN60°,請(qǐng)判斷線(xiàn)段BM,DNMN之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)(拓展應(yīng)用)

如圖3,在四邊形ABCD中,ABAD2,∠ADC120°,點(diǎn)MN分別在邊BC,CD上,連接AM,MN,AN,ABM是等邊三角形,AMAD于點(diǎn)A,∠DAN15°,請(qǐng)直接寫(xiě)出CMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若一個(gè)三角形一條邊上的高等于這條邊長(zhǎng)的一半,則稱(chēng)該三角形為半高三角形,這條高稱(chēng)為半高

1)如圖1中,,,點(diǎn)上,于點(diǎn),于點(diǎn),連接,求證: 半高三角形;

2)如圖2,半高三角形,且邊上的高是半高,點(diǎn)上,于點(diǎn),于點(diǎn)于點(diǎn)

①請(qǐng)?zhí)骄?/span>,,之間的等量關(guān)系,并說(shuō)明理由;

②若的面積等于16,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案