【題目】規(guī)定:有一角重合,且角的兩邊疊合在一起的兩個相似四邊形叫做“嵌套四邊形”,如圖,四邊形ABCD和AMPN就是嵌套四邊形.
(1)問題聯想
如圖①,嵌套四邊形ABCD,AMPN都是正方形,現把正方形AMPN以A為中心順時針旋轉150°得到正方形AM'P'N',連接BM',DN'交于點O,則BM'與DN'的數量關系為_____,位置關系為_____;
(2)類比探究
如圖②,將(1)中的正方形換成菱形,∠BAD=∠MAN=60,其他條件不變,則(1)中的結論還成立嗎? 若成立,請說明理由;若不成立,請給出正確的結論,并說明理由;
(3)拓展延伸
如圖3,將(1)中的嵌套四邊形ABCD和AMPN換成是長和寬之比為2:1的矩形,旋轉角換成α(90°<α<180°),其他條件不變,請直接寫出BM'與DN'的數量關系和位置關系.
【答案】(1),;(2)成立,不成立,與相交,且夾角為.理由見解析;(3),.
【解析】
(1)根據SAS證明△ABM’≌△AND’,進而得到,∠ABM’=∠ADN’,再利用三角形內角和可推出∠BOD=90°,即;
(2)根據旋轉和菱形的性質證明,再推出,故可求解;
(3)根據旋轉和矩形的性質證明,得到,再推出即可求解.
(1)如圖設,交于點H,,
∵四邊形ABCD,AMPN都是正方形,把正方形AMPN以A為中心順時針旋轉150°得到正方形AM'P'N',
∴AB=AD,AM’=AD’,
∴△ABM’≌△AND’,
∴,∠ABM’=∠ADN’,
∵∠ADN’+∠DHA+∠DAH=180°,∠ABM’+∠BHO+∠BOD=180°,
又∠DHA=∠BHO
∴,即
故答案為:,;
(2)成立,不成立,與相交,且夾角為.
理由:設,交于點,
由旋轉的性質可得.
∵四邊形,都是菱形,
∴,,
∴,
∴,.
又∵,
∴;
故與相交,且夾角為;
(3),,理由如下:
設,交于點,
由旋轉的性質可得.
∵四邊形ABCD和AMPN是長和寬之比為2:1的矩形
∴,,
∴
∴,
∴,.
又∵,
∴
∴,.
科目:初中數學 來源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標系中,OB 在 x軸上,若 OA=2,將三角板繞原點 O 順時針旋轉 75°,則點 A 的對應點 A′ 的坐標為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+2x+a交x軸于點A,B,交y軸于點C,點A的橫坐標為﹣2.
(1)求拋物線的對稱軸和函數表達式.
(2)連結BC線段,BC上有一點D,過點D作x軸的平行線交拋物線于點E,F,若EF=6,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級決定購買學習用具對在本次適應性考以中成績突出的同學進行獎勵,其中計劃購買,A、B兩種型號的鋼筆共45支,已知A種鋼筆的單價為7元/支,購買B種鋼筆所需費用y(元)與購買數量x(支)之間存在如圖所示的函數關系式.
(1)求y與x的函數關系式;
(2)若購買計劃中,B種鋼筆的數最不超過35支,但不少于A種鋼筆的數量,請設計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了響應上級教委的“海航招飛”號召,某校從九年級應屆男生中抽取視力等生理指標合格的部分學生進行了文化課初檢,教務處負責同志將測測試結果分為四個等級:甲、乙、丙、丁,然后將相關數據整理為兩幅不完整的統(tǒng)計圖,請依據相關信息解答下列問題:
(1)本次參加文化課初檢的男生人數為 ;
(2)扇形圖中m的數值為 ,把條形統(tǒng)計圖補充完整;
(3)據統(tǒng)計,全省生理指標過關的九年級男生有2400名左右,若規(guī)定文化課等級為“甲”“乙”的可進行文化課二檢,請估計進入二檢的男生有 ;
(4)本次抽檢進入“甲”等的4名男生中九(1)、九(2)班各占2名,若從“甲”等學生中隨機抽取兩名男生進行調研,請用樹形圖表示抽到的兩名男生恰為九(1)班的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,連接BD、CE.將△ADE繞點A旋轉,BD、CE也隨之運動.
(1)求證:BD=CE;
(2)在△ADE繞點A旋轉過程中,當AE∥BC時,求∠DAC的度數;
(3)如圖②,當點D恰好是△ABC的外心時,連接DC,判斷四邊形ADCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某地下商業(yè)街的入口,數學課外興趣小組同學打算運用所學知識測量側面支架最高點E到地面距離EF.經測量,支架立柱BC與地面垂直,即∠BCA=90°,且BC=1.5cm,點F、A、C在同一條水平線上,斜桿AB與水平線AC夾角∠BAC=30°,支撐桿DE⊥AB于點D,該支架邊BE與AB夾角∠EBD=60°,又測得AD=1m.請你求出該支架邊BE及頂端E到地面距離EF長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣x+c與x軸相交于點A(﹣2,0)、B(4,0),與y軸相交于點C,連接AC,BC,以線段BC為直徑作⊙M,過點C作直線CE∥AB,與拋物線和⊙M分別交于點D,E,點P在BC下方的拋物線上運動.
(1)求該拋物線的解析式;
(2)當△PDE是以DE為底邊的等腰三角形時,求點P的坐標;
(3)當四邊形ACPB的面積最大時,求點P的坐標并求出最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,.將AOB沿x軸依次以點A、B、O為旋轉中心順時針旋轉,分別得到圖②、圖③、,則旋轉得到的第13個三角形的直角頂點的坐標為______________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com