【題目】一元二次方程4x-2x-1=0的根的情況為( )

A.有兩個相等的實數(shù)根B.有兩個不相等的實根數(shù)

C.只有一個實數(shù)根D.沒有實數(shù)根

【答案】B

【解析】

先求出△的值,再根據(jù)△>0方程有兩個不相等的實數(shù)根;△=0方程有兩個相等的實數(shù);△<0方程沒有實數(shù)根,進行判斷即可.

解:∵△=-22-4×4×-1=200
∴一元二次方程4x2-2x-1=0有兩個不相等的實數(shù)根.
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E分別是AB、AC的中點,CD⊥AB于D,BE⊥AC于E,求證:AC=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣州亞運會中,志愿者們手上、脖子上的絲巾非常美麗,車間70名工人承接了生產(chǎn)絲巾的任務(wù),已知每人每天平均生產(chǎn)手上的絲巾1800條或脖子上的絲巾1200條,一條脖子上的絲巾要配兩條手上的絲巾,為了使每天生產(chǎn)的絲巾正好配套,應(yīng)分配多少名工人生產(chǎn)脖子上的絲巾,多少名工人生產(chǎn)手上的絲巾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分別是AE、CD的中點.
(1)求證:△ABE≌△DBC;
(2)判定△BMN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線相交于A(1,),B(4,0)兩點.

(1)求出拋物線的解析式;

(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;

(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們在2017年1月的日歷中標出一個十字星,并計算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為10×12﹣4×18=48,再選擇其他位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48.

(1)如圖2,將正整數(shù)依次填入5列的長方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個定值,則這個定值為

(2)若將正整數(shù)依次填入k列的長方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請用k表示出這個定值,并證明你的結(jié)論.
(3)如圖3,將正整數(shù)依次填入三角形的數(shù)表中,探究不同十字星的“十字差”,若某個十字星中心的數(shù)在第32行,且其相應(yīng)的“十字差”為2017,則這個十字星中心的數(shù)為(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸和y軸的正半軸上,頂點B的坐標為(2m,m),翻折矩形OABC,使點A與點C重合,得到折痕DE,設(shè)點B的對應(yīng)點為F,折痕DE所在直線與y軸相交于點G,經(jīng)過點C,F(xiàn),D的拋物線為

(1)求點D的坐標(用含m的式子表示);

(2)若點G的坐標為(0,﹣3),求該拋物線的解析式;

(3)在(2)的條件下,設(shè)線段CD的中點為M,在線段CD上方的拋物線上是否存在點P,使PM=EA?若存在,直接寫出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案