【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線相交于A(1,),B(4,0)兩點(diǎn).
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時(shí)點(diǎn)M的坐標(biāo).
【答案】(1);(2)D(1,0)或(0,)或(0,);(3),M(,).
【解析】
試題分析:(1)由A、B兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)分D在x軸上和y軸上,當(dāng)D在x軸上時(shí),過A作AD⊥x軸,垂足D即為所求;當(dāng)D點(diǎn)在y軸上時(shí),設(shè)出D點(diǎn)坐標(biāo)為(0,d),可分別表示出AD、BD,再利用勾股定理可得到關(guān)于d的方程,可求得d的值,從而可求得滿足條件的D點(diǎn)坐標(biāo);
(3)過P作PF⊥CM于點(diǎn)F,利用Rt△ADO∽R(shí)t△MFP以及三角函數(shù),可用PF分別表示出MF和NF,從而可表示出MN,設(shè)BC=a,則可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,從而可用PF表示出CN,可求得的值;借助a可表示出M點(diǎn)的坐標(biāo),代入拋物線解析式可求得a的值,從而可求出M點(diǎn)的坐標(biāo).
試題解析:
(1)∵A(1,),B(4,0)在拋物線的圖象上,∴,解得,∴拋物線解析式為;
(2)存在三個(gè)點(diǎn)滿足題意,理由如下:
①當(dāng)點(diǎn)D在x軸上時(shí),如圖1,過點(diǎn)A作AD⊥x軸于點(diǎn)D,∵A(1,),∴D坐標(biāo)為(1,0);
②當(dāng)點(diǎn)D在y軸上時(shí),設(shè)D(0,d),則,,且,∵△ABD是以AB為斜邊的直角三角形,∴
,即,解得d=,∴D點(diǎn)坐標(biāo)為(0,)或(0,);
綜上可知存在滿足條件的D點(diǎn),其坐標(biāo)為(1,0)或(0,)或(0,);
(3)如圖2,過P作PF⊥CM于點(diǎn)F,∵PM∥OA,∴Rt△ADO∽R(shí)t△MFP,∴=,∴MF=PF,在Rt△ABD中,BD=3,AD=,∴tan∠ABD=,∴∠ABD=60°,設(shè)BC=a,則CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF=,∴FN=PF,∴MN=MF+FN=PF,∵S△BCN=2S△PMN,∴,∴a=PF,∴NC=a=PF,∴==,∴MN=NC==a,∴MC=MN+NC=()a,∴M點(diǎn)坐標(biāo)為(4﹣a,()a),又M點(diǎn)在拋物線上,代入可得=()a,解得a=或a=0(舍去),OC=4﹣a=,MC=,∴點(diǎn)M的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A 為數(shù)軸上表示-2的動(dòng)點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長到B時(shí),點(diǎn)B所表示的實(shí)數(shù)是( )
A.2
B.-6
C.2或-6
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若方程(a-2)x+ax-3=0是關(guān)于x的一元二次方程,則a的取值范圍是( ).
A.a≥2且a≠2B.a≥0且a≠2C.a≥2D.a≠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程4x-2x-1=0的根的情況為( )
A.有兩個(gè)相等的實(shí)數(shù)根B.有兩個(gè)不相等的實(shí)根數(shù)
C.只有一個(gè)實(shí)數(shù)根D.沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1;
(2)在y軸上找出一點(diǎn)P,使得PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo);
(3)在平面直角坐標(biāo)系中,找出一點(diǎn)A2 , 使△A2BC與△ABC關(guān)于直線BC對(duì)稱,直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知盒中裝有僅顏色不同的玻璃球6個(gè),其中紅球2個(gè)、黑球3個(gè)、白球1個(gè)(I)從中任取1個(gè)球, 求取得紅球或黑球的概率;
(II)列出一次任取2個(gè)球的所有基本事件;
(III)從中取3個(gè)球,求至少有一個(gè)紅球的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2007年某校初中三個(gè)年級(jí)在校學(xué)生共796名,學(xué)生的出生月份統(tǒng)計(jì)如下,根據(jù)圖中數(shù)據(jù)回答以下問題:
(1)出生人數(shù)少于60人的月份有哪些?
(2)至少有兩個(gè)人生日在10月5日是不可能事件,還是可能事件,還是必然事件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=30°,點(diǎn)P在∠AOB內(nèi)部且OP=4,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則P1P2= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com