【題目】定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.

(1)判斷下列命題是真命題,還是假命題?

①正方形是自相似菱形;

②有一個內角為60°的菱形是自相似菱形.

③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°α90°),EBC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED

(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,EBC中點.

①求AEDE的長;

AC,BD交于點O,求tanDBC的值.

【答案】(1)見解析;(2)AE=2,DE=4;②tanDBC=

【解析】

1)①證明ABE≌△DCESAS),得出ABE∽△DCE即可;

②連接AC,由自相似菱形的定義即可得出結論;

③由自相似菱形的性質即可得出結論;

2)①由(1)③得ABE∽△DEA,得出,求出AE2,DE4即可;

②過EEMADM,過DDNBCN,則四邊形DMEN是矩形,得出DNEM,DMEN,∠M=∠N90°,設AMx,則ENDMx+4,由勾股定理得出方程,解方程求出AM1,ENDM5,由勾股定理得出DNEM,求出BN7,再由三角函數(shù)定義即可得出答案.

解:(1)①正方形是自相似菱形,是真命題;理由如下:

如圖3所示:

∵四邊形ABCD是正方形,點EBC的中點,

AB=CD,BE=CE,∠ABE=DCE=90°

ABEDCE

,

∴△ABE≌△DCE(SAS),

∴△ABE∽△DCE,

∴正方形是自相似菱形,

故答案為:真命題;

②有一個內角為60°的菱形是自相似菱形,是假命題;理由如下:

如圖4所示:

連接AC

∵四邊形ABCD是菱形,

AB=BC=CDADBC,ABCD,

∵∠B=60°,

∴△ABC是等邊三角形,∠DCE=120°

∵點EBC的中點,

AEBC,

∴∠AEB=DAE=90°

∴只能△AEB與△DAE相似,

ABCD,

∴只能∠B=AED

若∠AED=B=60°,則∠CED=180°90°60°=30°,

∴∠CDE=180°120°30°=30°,

∴∠CED=CDE,

CD=CE,不成立,

∴有一個內角為60°的菱形不是自相似菱形,

故答案為:假命題;

③若菱形ABCD是自相似菱形,∠ABC=α(0°α90°),EBC中點,

則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,是真命題;理由如下:

∵∠ABC=α(0°α90°),

∴∠C90°,且∠ABC+C=180°,△ABE與△EDC不能相似,

同理△AED與△EDC也不能相似,

∵四邊形ABCD是菱形,

ADBC

∴∠AEB=DAE,

當∠AED=B時,△ABE∽△DEA,

∴若菱形ABCD是自相似菱形,∠ABC=α(0°α90°),EBC中點,

則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,

故答案為:真命題;

(2)①∵菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,EBC中點,

BE=2AB=AD=4,

(1)③得:△ABE∽△DEA

AE2=BEAD=2×4=8,

AE=2DE===4,

故答案為:AE=2DE=4;

②過EEMADM,過DDNBCN,如圖2所示:則四邊形DMEN是矩形,

DN=EM,DM=EN,∠M=N=90°,

AM=x,則EN=DM=x+4,

由勾股定理得:EM2=DE2DM2=AE2AM2,

(4)2(x+4)2=(2)2x2,

解得:x=1,

AM=1,EN=DM=5,

DN=EM==,

RtBDN中,

BN=BE+EN=2+5=7,

tanDBC=,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BC2CD1,以AD為直徑的半圓OBC相切于點E,連接BD,則陰影部分的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(﹣2,0),B03),C(﹣4,1).以原點O為旋轉中心,將△ABC順時針旋轉90°得到△A'B'C',其中點A,BC旋轉后的對應點分別為點A',B',C'.

1)畫出△A'B'C',并寫出點A',B',C'的坐標;

2)求經(jīng)過點B',BA三點的拋物線對應的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,上一點,是半徑上一動點(不與重合),過點作射線,分別交弦兩點,過點的切線交射線于點

1)求證:

2)當的中點時,

①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;

②若,且,則_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在長方形鋼板ABCD的邊AB上找一點E,使∠AEC150°,應怎樣確定點E的位置?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC為對角線,點E,F分別在ABAD上,BE=DF,連接EF

1)求證:AC⊥EF;

2)延長EFCD的延長線于點G,連接BDAC于點O,若BD=4,tanG=,求AO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于給定的,我們給出如下定義:若點M是邊上的一個定點,且以M為圓心的半圓上的所有點都在的內部或邊上,則稱這樣的半圓為邊上的點M關于的內半圓,并將半徑最大的內半圓稱為點M關于的最大內半圓.若點M是邊上的一個動點(M不與B,C重合),則在所有的點M關于的最大內半圓中,將半徑最大的內半圓稱為關于的內半圓.

1)在中,,,

①如圖1,點D在邊上,且,直接寫出點D關于的最大內半圓的半徑長;

②如圖2,畫出關于的內半圓,并直接寫出它的半徑長;

2)在平面直角坐標系中,點E的坐標為,點P在直線上運動(P不與O重合),將關于的內半圓半徑記為R,當時,求點P的橫坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品經(jīng)銷店欲購進A、B兩種紀念品,用320元購進的A種紀念品與用400元購進的B種紀念品的數(shù)量相同,每件B種紀念品的進價比A種紀念品的進價貴10元.

(1)A、B兩種紀念品每件的進價分別為多少?

(2)若該商店A種紀念品每件售價45元,B種紀念品每件售價60元,這兩種紀念品共購進200件,這兩種紀念品全部售出后總獲利不低于1600元,求A種紀念品最多購進多少件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABCD,∠B60°AD2,BC8,點P從點B出發(fā)沿折線BAADDC勻速運動,同時,點Q從點B出發(fā)沿折線BCCD勻速運動,點P與點Q的速度相同,當二者相遇時,運動停止,設點P運動的路程為x,BPQ的面積為y,則y關于x的函數(shù)圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

同步練習冊答案