【題目】某汽車專賣店經(jīng)銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當(dāng)該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.

1)當(dāng)售價為萬元/輛時,平均每周的銷售利潤為___________萬元;

2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.

【答案】12萬元

【解析】

1)根據(jù)當(dāng)該型號汽車售價定為25萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出1輛,即可求出當(dāng)售價為22萬元/輛時,平均每周的銷售量,再根據(jù)銷售利潤=一輛汽車的利潤×銷售數(shù)量列式計算;

2)設(shè)每輛汽車降價x萬元,根據(jù)每輛的盈利×銷售的輛數(shù)=90萬元,列方程求出x的值,進而得到每輛汽車的售價.

1)由題意,可得當(dāng)售價為22萬元/輛時,平均每周的銷售量是:

×1814,

則此時,平均每周的銷售利潤是:(2215)×1498(萬元);

2)設(shè)每輛汽車降價x萬元,根據(jù)題意得:

25x15)(82x)=90,

解得x11,x25

當(dāng)x1時,銷售數(shù)量為82×110(輛);

當(dāng)x5時,銷售數(shù)量為82×518(輛),

為了盡快減少庫存,則x5,此時每輛汽車的售價為25520(萬元),

答:每輛汽車的售價為20萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,邊上的點(不與,重合),連接,下列表述錯誤的是(

A. 邊的中線,則

B. 邊的高線,則

C. 的平分線,則的面積相等

D. 的平分線又是邊的中線,則邊的高線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商店購進乒乓球拍和羽毛球拍進行銷售,已知羽毛球拍比乒乓球拍每副進價高20元,用10000元購進羽毛球拍與用8000元購進乒乓球拍的數(shù)量相等.

1)求每副乒乓球拍、羽毛球拍的進價各是多少元?

2)該體育用品商店計劃用不超過8840元購進乒乓球拍、羽毛球拍共100副進行銷售,且乒乓球拍的進貨量不超過60副,請求出該商店有幾種進貨方式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達式;

(2)若點M是拋物線F1位于第二象限圖象上的一點,設(shè)四邊形MAOC和BOC的面積分別為S四邊形MAOC和SBOC,記S=S四邊形MAOCSBOC,求S最大時點M的坐標(biāo)及S的最大值;

(3)如圖,將拋物線F1沿y軸翻折并復(fù)制得到拋物線F2,點A、B與(2)中所求的點M的對應(yīng)點分別為A、B、M,過點M作MEx軸于點E,交直線AC于點D,在x軸上是否存在點P,使得以A、D、P為頂點的三角形與ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片放在直角坐標(biāo)系中,為原點,點軸上,點軸上,.

1)如圖1,在上取一點,將沿折疊,使點落在邊上的點處,求直線的解析式;

2)如圖2,在邊上選取適當(dāng)?shù)狞c,將沿折疊,使點落在邊上的點處,過于點,交點,連接,判斷四邊形的形狀,并說明理由;

3)、在(2)的條件下,若點坐標(biāo),點直線上,問坐標(biāo)軸上是否存在點,使以為頂點的四邊形是平行四邊形,若存在,請直接寫出點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+3.

(1)畫出這個函數(shù)的圖象;

(2)根據(jù)圖象,直接寫出;

①當(dāng)函數(shù)值y為正數(shù)時,自變量x的取值范圍;

②當(dāng)﹣2<x<2時,函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y=x+y軸的交點為A,直線l1與直線l2y=kx的交點M的坐標(biāo)為M(3,a).

a= k= ;

⑵直接寫出關(guān)于x的不等式x+kx>0的解集 ;

⑶若點Bx軸上,MB=MA,直接寫出點B的坐標(biāo) .

⑷在x軸上是否存在一點N,使得NM-NA的值最大,若不存在,請說明理由;若存在,請直接寫出點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點是線段上的動點(點不重合),分別以為邊向線段的同一側(cè)作正和正.

1)請你判斷有怎樣的數(shù)量關(guān)系?請說明理由;

2)連接,相交于點,設(shè),那么的大小是否會隨點的移動而變化?請說明理由;

3)如圖2,若點固定,將繞點按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于),此時的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某街道1000米的路面下雨時經(jīng)常嚴重積水.需改建排水系統(tǒng).市政公司準備安排甲、乙兩個工程隊做這項工程,根據(jù)評估,有兩個施工方案:

方案一:甲、乙兩隊合作施工,那么12天可以完成;

萬案二:如果甲隊先做10天,剩下的工程由乙隊單獨施工,還需15天才能完成.

l)甲、乙兩隊單獨完成此項工程各需多少天?

2)方案一中,甲、乙兩隊實際各施工了多少米?

查看答案和解析>>

同步練習(xí)冊答案