【題目】下列說法中正確的是(

A.有且只有一條直線與已知直線垂直;

B.從直線外一點到這條直線的垂線段,叫做這點到這條直線距離;

C.互相垂直的兩條線段一定相交;

D.直線外一點與直線上各點連接而成的所有線段中,最短線段的長度是,則點到直線的距離是.

【答案】D

【解析】

對照垂線的兩條性質(zhì)逐一判斷.

①從直線外一點引這條直線的垂線,垂線段最短;

②過一點有且只有一條直線與已知直線垂直.

解:A、和一條直線垂直的直線有無數(shù)條,故A錯誤;

B、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離,不是指點到直線的垂線段的本身,而是指垂線段的長度,故B錯誤;

C、互相垂直的兩條線段不一定相交,線段有長度限制,故C錯誤;

D、直線l外一點A與直線l上各點連接而成的所有線段中最短線段就是垂線段,可表示點A到直線l的距離,故D正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某次籃球聯(lián)賽中,兩隊的積分如下表所示:

隊名

比賽場次

勝場場次

負場場次

積分

前進

14

10

4

24

鋼鐵

14

0

14

14

請回答下列問題:

1)負一場_________積分;

2)求勝一場積多少分?

3)某隊的勝場總積分比負場總積分的3倍多3分,求該隊勝了多少場?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設(shè)運動時間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;

(3)當t為何值時,△PQF為等腰三角形?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠C=90°,點OABC三條角平分線的交點,ODBCDOEACE,OFABF,且AB=10cm,BC=8cm,AC=6cm,則點O到三邊AB、ACBC的距離為( 。

A.2cm,2cm,2cmB.3cm3cm,3cmC.4cm,4cm4cmD.2cm,3cm5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖EFAD,∠1=∠2,∠BAC70。將求∠AGD的過程填寫完整。

EFAD(已知)

∴∠2__________

又∵∠1=∠2

∴∠1=∠3

AB________

∴∠BAC__________180

又∵∠BAC70

∴∠AGD180 —__________=________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程由甲乙兩隊合做天完成,廠家需付甲乙兩隊共元;乙丙兩隊合做天完成,廠家需付乙丙兩隊共元;甲丙兩隊合做天完成全部工程的,廠家需付甲丙兩隊共元.

(1)求甲、乙、丙各隊單獨完成全部工程各需多少天?

(2)若要求不超過天完成全啊工程,問可由哪隊單獨完成此項工程花錢最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx的函數(shù),自變量x的取值范圍x>0,下表是yx的幾組對應值:

小騰根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.

下面是小騰的探究過程,請補充完整:

(1)如圖,在平面直角坐標系xOy中,描出了以上表格中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

(2)根據(jù)畫出的函數(shù)圖象,寫出:

x=4對應的函數(shù)值y約為_____________;

②該函數(shù)的一條性質(zhì):_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列關(guān)于x的方程

查看答案和解析>>

同步練習冊答案