【題目】已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示,下列說法中①abc<0;②2a+b=0;③當(dāng)﹣1<x<3時(shí),y>0;④2c﹣3b<0.正確的結(jié)論有( 。
A. ①②B. ②③④C. ①③D. ①②④
【答案】D
【解析】
由拋物線的開口方向判斷a,由拋物線與y軸的交點(diǎn)判斷c,根據(jù)對(duì)稱軸的位置判斷b及a、b關(guān)系,根據(jù)拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷
拋物線開口向下,則a<0.對(duì)稱軸在y軸右側(cè),a、b異號(hào),則b>0.拋物線與y軸交于正半軸,則c>0,所以abc<0,故①正確;
拋物線的對(duì)稱軸是直線x=1,則,b=﹣2a,所以2a+b=0,故②正確;
由圖象可知,拋物線與x軸的左交點(diǎn)位于0和﹣1之間,在兩個(gè)交點(diǎn)之間時(shí),y>0,在x=﹣1時(shí),y<0,故③錯(cuò)誤;
當(dāng)x=﹣1時(shí),有y=a﹣b+c<0,由2a+b=0,得,代入得,兩邊乘以2得2c﹣3b<0,故④正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠CAB=60°,AC=1,將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE, 點(diǎn)B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC,BD于點(diǎn)E,F,CE=2,連接CF.給出以下結(jié)論:①△ABF≌△CBF;②點(diǎn)E到AB的距離是3;③tan∠DCF=;④△ABF的面積為.其中正確的結(jié)論序號(hào)是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動(dòng),推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競(jìng)技;C.家鄉(xiāng)導(dǎo)游;D.植物識(shí)別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(jí)(3)班班主任劉老師對(duì)全班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問題:
(1)八年級(jí)(3)班學(xué)生總?cè)藬?shù)是 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)劉老師發(fā)現(xiàn)報(bào)名參加“植物識(shí)別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,請(qǐng)用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+ax﹣3交x軸于點(diǎn)A,D兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)A的直線與x軸下方的拋物線交于點(diǎn)B,已知點(diǎn)A的坐標(biāo)是(﹣1,0).
(1)求a的值;
(2)連結(jié)BD,求△ADB面積的最大值;
(3)當(dāng)△ADB面積最大時(shí),求點(diǎn)C到直線AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解
我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系.如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系.如圖1,經(jīng)過平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PM和PN交x軸和y軸于M、N,點(diǎn)M、N在x軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo).
如圖2,ω=30°,直角三角形的頂點(diǎn)A在坐標(biāo)原點(diǎn)O,點(diǎn)B、C分別在x軸和y軸上,AB=,則點(diǎn)B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為B ,C .
(2)嘗試應(yīng)用
如圖3,ω=45°,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為1的正方形OABC一邊OA在x軸上,設(shè)點(diǎn)G(x,y)在經(jīng)過A、C兩點(diǎn)的直線上,求y與x之間滿足的關(guān)系式.
(3)深入探究
如圖4,ω=60°,O為坐標(biāo)原點(diǎn),M(2,2),圓M的半徑為.有一個(gè)內(nèi)角為60°的菱形,菱形的一邊在x軸上,另有兩邊所在直線恰好與圓M相切,求此菱形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開始向點(diǎn)A以1cm/s的速度移動(dòng):同時(shí)點(diǎn)Q沿邊AB,BC從點(diǎn)A開始向點(diǎn)C以acm/s的速度移動(dòng),當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P,Q同時(shí)停止移動(dòng).設(shè)點(diǎn)P出發(fā)x秒時(shí),△PAQ的面積為ycm2,y與x的函數(shù)圖象如圖②,線段EF所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣4x+21,則a的值為( )
A. 1.5B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com