【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).
【答案】
【解析】解:(1)依題意得:,
解之得:,
∴拋物線解析式為y=﹣x2﹣2x+3
∵對稱軸為x=﹣1,且拋物線經(jīng)過A(1,0),
∴把B(﹣3,0)、C(0,3)分別代入直線y=mx+n,
得,
解之得:,
∴直線y=mx+n的解析式為y=x+3;
(2)設(shè)直線BC與對稱軸x=﹣1的交點為M,則此時MA+MC的值最。
把x=﹣1代入直線y=x+3得,y=2,
∴M(﹣1,2),
即當(dāng)點M到點A的距離與到點C的距離之和最小時M的坐標(biāo)為(﹣1,2);
(3)設(shè)P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,
①若點B為直角頂點,則BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若點C為直角頂點,則BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若點P為直角頂點,則PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;
綜上所述P的坐標(biāo)為(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=4x2﹣4xy+y2,B=x2+xy﹣5y2
求:(1) 3A﹣2B; (2) 2A+B;(3)(3A﹣2B)﹣(2A+B)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,現(xiàn)在有一足夠大的直角三角板,它的直角頂點D是BC上一點,另兩條直角邊分別交AB、AC于點E、F.
(1)如圖1,若DE⊥AB,DF⊥AC,求證:四邊形AEDF是矩形;
(2)在(1)條件下,若點D在∠BAC的 角平分線上,試判斷此時四邊形AEDF的形狀,并說明理由;
(3)若點D在∠BAC的角平分線上,將直角三角板繞點D旋轉(zhuǎn)一定的角度,使得直角三角板的兩條邊與兩條直角邊分別交于點E、F(如圖2),試證明AE+AF=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是平行四邊形ABCD的對角線AC上的兩點,AE=CF.
求證:(1)△ADF≌△CBE;
(2)EB∥DF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com