【題目】對(duì)于CC上的一點(diǎn)A若平面內(nèi)的點(diǎn)P滿(mǎn)足射線(xiàn)APC交于點(diǎn)Q(點(diǎn)Q可以與點(diǎn)P重合),則點(diǎn)P稱(chēng)為點(diǎn)A關(guān)于C的“生長(zhǎng)點(diǎn)”

已知點(diǎn)O為坐標(biāo)原點(diǎn),O的半徑為1,點(diǎn)A-1,0).

1)若點(diǎn)P是點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”且點(diǎn)Px軸上,請(qǐng)寫(xiě)出一個(gè)符合條件的點(diǎn)P的坐標(biāo)________;

2)若點(diǎn)B是點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,且滿(mǎn)足,求點(diǎn)B的縱坐標(biāo)t的取值范圍;

3)直線(xiàn)x軸交于點(diǎn)M,y軸交于點(diǎn)N若線(xiàn)段MN上存在點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”直接寫(xiě)出b的取值范圍是_____________________________

【答案】1)(2,0)(答案不唯一);(2;(3

【解析】試題分析:

1)由題意可知,在x軸上找點(diǎn)P是比較簡(jiǎn)單的,這樣的P點(diǎn)不是唯一的,如點(diǎn)(20)、(10)等;

2)如圖1,x軸上方作射線(xiàn)AMO于點(diǎn)M,使tanMAO=,并在射線(xiàn)AM是取點(diǎn)N,使MN=AM,則由題意可知,線(xiàn)段MN上的點(diǎn)都是符合條件的B點(diǎn),過(guò)點(diǎn)MMHx軸于點(diǎn)H,連接MC,結(jié)合已知條件求出點(diǎn)M和點(diǎn)N的縱坐標(biāo)即可得到所求B點(diǎn)的縱坐標(biāo)t的取值范圍;根據(jù)對(duì)稱(chēng)性,在x軸的下方得到線(xiàn)段M′N(xiāo)′,同理可求得滿(mǎn)足條件的B點(diǎn)的縱坐標(biāo)t的另一取值范圍;

3如圖2,3,由x軸交于點(diǎn)My軸交于點(diǎn)N,可得點(diǎn)M的坐標(biāo)為點(diǎn)N的坐標(biāo)為由此結(jié)合OMN的正切函數(shù)可求得OMN=60°;

以點(diǎn)D1,0為圓心,2為半徑作圓⊙D,⊙D⊙O相切于點(diǎn)A由題意可知,點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”都在⊙O⊙D之間的平面內(nèi),包括兩個(gè)圓但點(diǎn)A除外).

然后結(jié)合題意和∠OMN=60°b>0b<0兩種情況在圖2和圖3中求出ON1ON2的長(zhǎng)即可得到b的取值范圍了.

試題解析:

1)由題意可知,在x軸上找點(diǎn)P是比較簡(jiǎn)單的,這樣的P點(diǎn)不是唯一的,如點(diǎn)(2,0)、(10)等;

2)如圖1,在x軸上方作射線(xiàn)AM,與⊙O交于M,且使得,并在AM上取點(diǎn)N,使AM=MN,并由對(duì)稱(chēng)性,將MN關(guān)于x軸對(duì)稱(chēng),得,則由題意,線(xiàn)段MN上的點(diǎn)是滿(mǎn)足條件的點(diǎn)B.

MHx軸于H,連接MC,

MHA=90°,即∠OAM+AMH=90°.

AC是⊙O的直徑,

AMC=90°,即∠AMH+HMC=90°.

OAM=HMC.

.

.

設(shè),則 ,

,解得,即點(diǎn)M的縱坐標(biāo)為.

又由,A為(-10),可得點(diǎn)N的縱坐標(biāo)為,

故在線(xiàn)段MN上,點(diǎn)B的縱坐標(biāo)t滿(mǎn)足: .

由對(duì)稱(chēng)性,在線(xiàn)段上,點(diǎn)B的縱坐標(biāo)t滿(mǎn)足: .

點(diǎn)B的縱坐標(biāo)t的取值范圍是.

3如圖2,以點(diǎn)D10為圓心,2為半徑作圓⊙D,⊙D⊙O相切于點(diǎn)A,由題意可知,點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”都在⊙O⊙D之間的平面內(nèi)包括兩個(gè)圓但點(diǎn)A除外).

直線(xiàn)x軸交于點(diǎn)M,y軸交于點(diǎn)N,

點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,

tanOMN=,

∴∠OMN=60°

要在線(xiàn)段MN上找點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,現(xiàn)分“b>0”和“b<0”兩種情況討論:

I當(dāng)直線(xiàn)過(guò)點(diǎn)N10,1)時(shí),線(xiàn)段MN上有點(diǎn)A關(guān)于O的唯一“生長(zhǎng)點(diǎn)”N1,此時(shí)b=1;

當(dāng)直線(xiàn)D相切于點(diǎn)B時(shí),線(xiàn)段MN上有點(diǎn)A關(guān)于O的唯一“生長(zhǎng)點(diǎn)”B,此時(shí)直線(xiàn)y軸相交于點(diǎn)N2,與x軸相交于點(diǎn)M2,連接DB,則DB=2,

DM2=,

OM2=,

ON2=tan60°·OM2=,此時(shí)b=.

綜合①②可得,當(dāng)b>0時(shí),若線(xiàn)段MN上存在點(diǎn)A關(guān)于O生長(zhǎng)點(diǎn),則b的取值范圍為 ;

II、當(dāng)b<0時(shí)如圖3,同理可得若線(xiàn)段MN上存在點(diǎn)A關(guān)于O生長(zhǎng)點(diǎn),則b的取值范圍為 ;

綜上所述,若在線(xiàn)段MN上存在點(diǎn)A關(guān)于O生長(zhǎng)點(diǎn),b的取值范圍為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A1m),B4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線(xiàn)段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖點(diǎn)P是△ABC的邊BC上的一動(dòng)點(diǎn),點(diǎn)E與點(diǎn)P關(guān)于直線(xiàn)AB成軸對(duì)稱(chēng),連接EPAB于點(diǎn)F,連接AP、EC相交于點(diǎn)O,連接AE.

1)判斷AEAP的數(shù)量關(guān)系,并說(shuō)明理由.

2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,當(dāng)AEBC時(shí),判斷APBP的數(shù)量關(guān)系,并說(shuō)明理由.

3)若∠BAC=900,點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在線(xiàn)段AP與線(xiàn)段EC互相平分的情況,若存在,請(qǐng)求出點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)少年在綠茵場(chǎng)上游戲小紅從點(diǎn)A出發(fā)沿線(xiàn)段AB運(yùn)動(dòng)到點(diǎn)B小蘭從點(diǎn)C出發(fā),以相同的速度沿⊙O逆時(shí)針運(yùn)動(dòng)一周回到點(diǎn)C,兩人的運(yùn)動(dòng)路線(xiàn)如圖1所示,其中ACDB兩人同時(shí)開(kāi)始運(yùn)動(dòng)直到都停止運(yùn)動(dòng)時(shí)游戲結(jié)束,其間他們與點(diǎn)C的距離y與時(shí)間x(單位秒)的對(duì)應(yīng)關(guān)系如圖2所示.則下列說(shuō)法正確的是( 。

A. 小紅的運(yùn)動(dòng)路程比小蘭的長(zhǎng)

B. 兩人分別在1.09秒和7.49秒的時(shí)刻相遇

C. 當(dāng)小紅運(yùn)動(dòng)到點(diǎn)D的時(shí)候,小蘭已經(jīng)經(jīng)過(guò)了點(diǎn)D

D. 4.84秒時(shí),兩人的距離正好等于⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)圖,探究:

1)一個(gè)正方體組合圖形的主視圖、左視圖(如圖1)所示.

①這個(gè)幾何體可能是(圖2)甲、乙中的   ;

②這個(gè)幾何體最多可由   個(gè)小正方體構(gòu)成,請(qǐng)?jiān)趫D3中畫(huà)出符合最多情況的一個(gè)俯視圖.

2)如圖,已知一平面內(nèi)的四個(gè)點(diǎn)A、BC、D,根據(jù)要求用直尺畫(huà)圖.

①畫(huà)線(xiàn)段AB,射線(xiàn)AD;

②找一點(diǎn)M,使M點(diǎn)即在射線(xiàn)AD上,又在直線(xiàn)BC上;

③找一點(diǎn)N,使NAB、CD四個(gè)點(diǎn)的距離和最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)大小完全一樣的長(zhǎng)方形OABCEFGH重合放在一起,邊OAEF在數(shù)軸上,O為數(shù)軸原點(diǎn)(如圖1),長(zhǎng)方形OABC的邊長(zhǎng)OA的長(zhǎng)為6個(gè)坐標(biāo)單位.

1)數(shù)軸上點(diǎn)A表示的數(shù)為   

2)將長(zhǎng)方形EFGH沿?cái)?shù)軸所在直線(xiàn)水平移動(dòng)

①若移動(dòng)后的長(zhǎng)方形EFGH與長(zhǎng)方形OABC重疊部分的面積恰好等于長(zhǎng)方形OABC面積的,則移動(dòng)后點(diǎn)F在數(shù)軸上表示的數(shù)為   

②若出行EFGH向左水平移動(dòng)后,D為線(xiàn)段AF的中點(diǎn),求當(dāng)長(zhǎng)方形EFGH移動(dòng)距離x為何值時(shí),D、E兩點(diǎn)在數(shù)軸上表示的數(shù)是互為相反數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)分別與x軸、y軸交于兩點(diǎn),與直線(xiàn)交于點(diǎn)C42).

1)點(diǎn)A坐標(biāo)為( , ),B為( , );

2)在線(xiàn)段上有一點(diǎn)E,過(guò)點(diǎn)Ey軸的平行線(xiàn)交直線(xiàn)于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形是平行四邊形;

3)若點(diǎn)Px軸上一點(diǎn),則在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得四個(gè)點(diǎn)能構(gòu)成一個(gè)菱形.若存在,求出所有符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P從(02)出發(fā),沿所示的方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)P2019次碰到矩形的邊時(shí)點(diǎn)P的坐標(biāo)為( 。

A. 2,4 B. 20 C. 8,2D. 6,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n邊形的內(nèi)角和θ=(n2×180°

1)甲同學(xué)說(shuō),θ能取900°;而乙同學(xué)說(shuō),θ也能取800°.甲、乙的說(shuō)法對(duì)嗎?若對(duì),求出邊數(shù)n.若不對(duì),說(shuō)明理由;

2)若n邊形變?yōu)椋?/span>n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了540°,用列方程的方法確定x

查看答案和解析>>

同步練習(xí)冊(cè)答案