【題目】畫圖,探究:
(1)一個正方體組合圖形的主視圖、左視圖(如圖1)所示.
①這個幾何體可能是(圖2)甲、乙中的 ;
②這個幾何體最多可由 個小正方體構(gòu)成,請在圖3中畫出符合最多情況的一個俯視圖.
(2)如圖,已知一平面內(nèi)的四個點A、B、C、D,根據(jù)要求用直尺畫圖.
①畫線段AB,射線AD;
②找一點M,使M點即在射線AD上,又在直線BC上;
③找一點N,使N到A、B、C、D四個點的距離和最短.
科目:初中數(shù)學 來源: 題型:
【題目】已知一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊上的高為__;三角形的兩邊分別為3和5要使這個三角形組成直角三角形,則第三邊長是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AB=8,點P在邊CD上,tan∠PBC=,點Q是在射線BP上的一個動點,過點Q作AB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當點R與點D重合時,求PQ的長;
(2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年3月25日是全國中小學生安全教育日,某中學為加強學生的安全意識,組織了全校800名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖解題.
(1)這次抽取了 名學生的競賽成績進行統(tǒng)計,其中:m= ,n=
(2)補全頻數(shù)分布直方圖.
(3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于⊙C與⊙C上的一點A,若平面內(nèi)的點P滿足:射線AP與⊙C交于點Q(點Q可以與點P重合),且,則點P稱為點A關(guān)于⊙C的“生長點”.
已知點O為坐標原點,⊙O的半徑為1,點A(-1,0).
(1)若點P是點A關(guān)于⊙O的“生長點”,且點P在x軸上,請寫出一個符合條件的點P的坐標________;
(2)若點B是點A關(guān)于⊙O的“生長點”,且滿足,求點B的縱坐標t的取值范圍;
(3)直線與x軸交于點M,與y軸交于點N,若線段MN上存在點A關(guān)于⊙O的“生長點”,直接寫出b的取值范圍是_____________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個少年在綠茵場上游戲.小紅從點A出發(fā)沿線段AB運動到點B,小蘭從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人的運動路線如圖1所示,其中ACDB.兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點C的距離y與時間x(單位:秒)的對應(yīng)關(guān)系如圖2所示.則下列說法正確的是( )
A. 小紅的運動路程比小蘭的長
B. 兩人分別在1.09秒和7.49秒的時刻相遇
C. 當小紅運動到點D的時候,小蘭已經(jīng)經(jīng)過了點D
D. 在4.84秒時,兩人的距離正好等于⊙O的半徑
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題①如果a,b,c為一組勾股數(shù),那么4a,4b,4c仍是勾股數(shù);②如果三角形的三個內(nèi)角的度數(shù)比是3:4:5,那么這個三角形是直角三角形;③如果一個三角形的三邊是12、25、21,那么此三角形必是直角三角形;④一個等腰直角三角形的三邊是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正確的是( 。
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中,高AD、BE相交于點O,AE=BE,BC=5,且BD=CD.
(1)①求證:△AOE≌△BCE;②求線段AO的長.
(2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動,P、Q兩點同時出發(fā),當點P到達A點時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t秒,△POQ的面積為S,請用含t的式子表示S,并直接寫出t相應(yīng)的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com