【題目】如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過點(diǎn)P(1,m)作直線PA⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(點(diǎn)B、C不重合),連接CB、CP.
(I)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(II)當(dāng)m>1時(shí),連接CA,若CA⊥CP,求m的值;
(III)過點(diǎn)P作PE⊥PC,且PE=PC,當(dāng)點(diǎn)E落在坐標(biāo)軸上時(shí),求m的值,并確定相對(duì)應(yīng)的點(diǎn)E的坐標(biāo).
【答案】(I)4;(II) (III)(2,0)或(0,4)
【解析】
(I)當(dāng)m=3時(shí),拋物線解析式為y=-x2+6x,解方程-x2+6x=0得A(6,0),利用對(duì)稱性得到C(5,5),從而得到BC的長(zhǎng);
(II)解方程-x2+2mx=0得A(2m,0),利用對(duì)稱性得到C(2m-1,2m-1),再根據(jù)勾股定理和兩點(diǎn)間的距離公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
(III)如圖,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,則根據(jù)P點(diǎn)坐標(biāo)得到2m-2=m,解得m=2,再計(jì)算出ME=1得到此時(shí)E點(diǎn)坐標(biāo);作PH⊥y軸于H,如圖,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后計(jì)算出HE′得到E′點(diǎn)坐標(biāo).
(I)當(dāng)m=3時(shí),拋物線解析式為y=﹣x2+6x,
當(dāng)y=0時(shí),﹣x2+6x=0,解得x1=0,x2=6,則A(6,0),
拋物線的對(duì)稱軸為直線x=3,
∵P(1,3),
∴B(1,5),
∵點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C
∴C(5,5),
∴BC=5﹣1=4;
(II)當(dāng)y=0時(shí),﹣x2+2mx=0,解得x1=0,x2=2m,則A(2m,0),
B(1,2m﹣1),
∵點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C,而拋物線的對(duì)稱軸為直線x=m,
∴C(2m﹣1,2m﹣1),
∵PC⊥PA,
∴PC2+AC2=PA2,
∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
整理得2m2﹣5m+3=0,解得m1=1,m2=,
即m的值為;
(III)如圖,
∵PE⊥PC,PE=PC,
∴△PME≌△CBP,
∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
而P(1,m)
∴2m﹣2=m,解得m=2,
∴ME=m﹣1=1,
∴E(2,0);
作PH⊥y軸于H,如圖,
易得△PHE′≌△PBC,
∴PH=PB=m﹣1,HE′=BC=2m﹣2,
而P(1,m)
∴m﹣1=1,解得m=2,
∴HE′=2m﹣2=2,
∴E′(0,4);
綜上所述,m的值為2,點(diǎn)E的坐標(biāo)為(2,0)或(0,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋是世界最長(zhǎng)的跨海大橋,連接香港大嶼山、澳門半島和廣東省珠海市,其中珠海站到香港站全長(zhǎng)約55千米,2018年10月24日上午9時(shí)正式通車.一輛觀光巴士自珠海站出發(fā),25分鐘后,一輛小汽車從同一地點(diǎn)出發(fā),結(jié)果同時(shí)到達(dá)香港站.已知小汽車的速度是觀光巴士的1.6倍,求觀光巴士的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,,點(diǎn)在斜邊上,將沿著過點(diǎn)的一條直線翻折,使點(diǎn)落在射線上的點(diǎn)處,連接并延長(zhǎng),交射線于.
(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),求BD的長(zhǎng).
(2)當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),設(shè)為,為,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域.
(3)連接,當(dāng)是直角三角形時(shí),請(qǐng)直接寫出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)配方法是指將一個(gè)式子或一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平
方式的和,這種方法稱之為配方法,例如:可將多項(xiàng)式通過橫檔變形化為的形式,這個(gè)變形過程中應(yīng)用了配方法.
(1)(理解)對(duì)于多項(xiàng)式,當(dāng)x=____________時(shí),它的最小值為______________.
(2)(應(yīng)用)若,求的值.
(3)(拓展)是的三邊,且有.
①若c為整數(shù),求c的值.
②直接寫出這個(gè)三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.
(1)證明:AB=AD+BC;
(2)判斷△CDE的形狀?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將某雷達(dá)測(cè)速區(qū)監(jiān)測(cè)到的一組汽車的時(shí)速數(shù)據(jù)整理,得到其頻數(shù)分布表(未完成):
數(shù)據(jù)段 | 30~40 | 40~50 | 50~60 | 60~70 | 70~80 | 總計(jì) |
頻 數(shù) | 10 | 40 | | | 20 | |
百分比 | 5% | | 40% | | 10% | |
注:30~40為時(shí)速大于等于30千米而小于40千米,其他類同.
(1)請(qǐng)你把表中的數(shù)據(jù)填寫完整;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果此路段汽車時(shí)速超過60千米即為違章,則違章車輛共有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距80km,一輛汽車上午9:00從甲地出發(fā)駛往乙地,勻速行駛了一半的路程后將速度提高了20km/h,并繼續(xù)勻速行駛至乙地,汽車行駛的路程y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系如圖所示,該車到達(dá)乙地的時(shí)間是當(dāng)天上午( 。
A. 10:35 B. 10:40 C. 10:45 D. 10:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)被平均分成等份的轉(zhuǎn)盤,每一個(gè)扇形中都標(biāo)有相應(yīng)的數(shù)字,甲乙兩人分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤,設(shè)甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為,乙轉(zhuǎn)動(dòng)轉(zhuǎn)盤后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為(當(dāng)指針在邊界上時(shí),重轉(zhuǎn)一次,直到指向一個(gè)區(qū)域?yàn)橹梗?/span>
直接寫出甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤后所指區(qū)域內(nèi)的數(shù)字為負(fù)數(shù)的概率;
用樹狀圖或列表法,求出點(diǎn)落在第二象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條公路旁依次有、、三個(gè)村莊,甲、乙兩人騎自行車分別從村、村同時(shí)出發(fā)前往村,甲、乙之間的距離與騎行時(shí)間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:
①、兩村相距;
②甲出發(fā)后到達(dá)村;
③甲每小時(shí)比乙我騎行;
④相遇后,乙又騎行了或時(shí)兩人相距.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com