【題目】港珠澳大橋是世界最長的跨海大橋,連接香港大嶼山、澳門半島和廣東省珠海市,其中珠海站到香港站全長約55千米,20181024日上午9時(shí)正式通車.一輛觀光巴士自珠海站出發(fā),25分鐘后,一輛小汽車從同一地點(diǎn)出發(fā),結(jié)果同時(shí)到達(dá)香港站.已知小汽車的速度是觀光巴士的1.6倍,求觀光巴士的速度.

【答案】觀光巴士的速度為49.5千米/小時(shí).

【解析】

設(shè)觀光巴士的速度為x千米/小時(shí),則小汽車的速度為1.6x千米/小時(shí),根據(jù)時(shí)間=路程÷速度結(jié)合觀光巴士比小汽車多用25分鐘,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)即可得出結(jié)論.

設(shè)觀光巴士的速度為x千米/小時(shí),則小汽車的速度為1.6x千米/小時(shí),

根據(jù)題意得:,

解得:x49.5

經(jīng)檢驗(yàn),x49.5是所列分式方程的解,且符合題意.

答:觀光巴士的速度為49.5千米/小時(shí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)圖象經(jīng)過點(diǎn)A0,2),且與正比例函數(shù)y=﹣x的圖象交于點(diǎn)B,B點(diǎn)的橫坐標(biāo)是﹣1

1)求該一次函數(shù)的解析式:

2)求一次函數(shù)圖象、正比例函數(shù)圖象與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段BD上一動點(diǎn),分別過點(diǎn)B、DABBD,EDBD,連接AC、EC.已知AB=2DE=1,BD=8,設(shè)CD=x

1)用含x的代數(shù)式表示AC+CE的長;

2)請問點(diǎn)C滿足什么條件時(shí),AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結(jié)論,請構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,AB=6,點(diǎn)DBC邊上的一點(diǎn),點(diǎn)PAB邊上的一點(diǎn),連接PD,以PD為邊作等邊三角形PDE,連接BE

1)如圖1,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),

找出圖中的一對全等三角形,并證明;

②BE+BD=

2)如圖2,若AP=1,請計(jì)算BE+BD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對應(yīng)點(diǎn).

(1)請畫出平移后的△DEF,并求△DEF的面積=

(2)若連接AD、CF,則這兩條線段之間的關(guān)系是_________________;

(3)請?jiān)贏B上找一點(diǎn)P,使得線段CP平分△ABC的面積,在圖上作出線段CP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:BD平分∠ABC,∠ABD=ADB,∠ABC=50°,請問:

1)∠BDC+∠C 的度數(shù)是多少?并說明理由.

2)若P點(diǎn)是BC上的一動點(diǎn)(B點(diǎn)除外),∠BDP與∠BPD之和是一個(gè)確定的值嗎?如果是,求出這個(gè)確定的值.如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBD相交于點(diǎn)OABCD,ABCD,則圖中的全等三角形共有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種新型生物醫(yī)藥產(chǎn)品,生產(chǎn)成本為2萬元/ 噸,每月生產(chǎn)能力為12噸,且生產(chǎn)出的產(chǎn)品都能銷售出去.這種產(chǎn)品部分內(nèi)銷,另一部分外銷(出口),內(nèi)銷與外銷的單價(jià) (單位:萬元/噸)與銷量的關(guān)系分別如圖1,圖2.

(1)如果該公司內(nèi)銷數(shù)量為x(單位:噸),內(nèi)、外銷單價(jià)分別為y 1 , y 2 ,求, 關(guān)于x的函數(shù)解析式;
(2)如果該公司內(nèi)銷數(shù)量為x(單位:噸),求內(nèi)銷獲得的毛利潤 關(guān)于x的函數(shù)解析式;
(3)請?jiān)O(shè)計(jì)一種銷售方案,使該公司本月能獲得最大毛利潤,并求出毛利潤的最大值.(毛利潤=銷售收入-生產(chǎn)成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對稱的A′B′C′,并寫出點(diǎn)B′的坐標(biāo);

(3)P是x軸上的動點(diǎn),在圖中找出使A′BP周長最短時(shí)的點(diǎn)P,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案