【題目】如圖,點(diǎn)A,B,C,D,E在⊙O上,AB⊥CB于點(diǎn)B,tanD=3,BC=2,H為CE延長(zhǎng)線上一點(diǎn),且AH= ,CH=5

(1)求證:AH是⊙O的切線;
(2)若點(diǎn)D是弧CE的中點(diǎn),且AD交CE于點(diǎn)F,求證:HF=HA;
(3)在(2)的條件下,求EF的長(zhǎng).

【答案】
(1)證明:如圖1所示:連接AC.

∵AB⊥CB,

∴AC是圓O的直徑.

∵∠C=∠D,

∴tanC=3.

∴AB=3BC=3×2=6.

在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40.

又∵AH2=10,CH2=50,

∴AC2+AH2=CH2

∴△ACH為直角三角形.

∴AC⊥AH.

∴AH是圓O的切線.


(2)解:如圖2所示:連接DE、BE.

∵AH是圓O的切線,

∴∠ABD=∠HAD.

∵D是 的中點(diǎn),

∴∠CED=∠EBD.

又∵∠ABE=∠ADE,

∴∠ABE+∠EBD=∠ADE+∠CED.

∴∠ABD=∠AFE.

∴∠HAF=∠AFH.

∴AH=HF.


(3)解:由切割線定理可知:AH2=EHCH,即( 2=5 EH.

解得:EH=

∵由(2)可知AF=FH=

∴EF=FH﹣EH=


【解析】(1)連接AC.由AB⊥BC可知AC是圓O的直徑,由同弧所對(duì)的圓周角相等可知∠C=∠D,于是得到tanC=3,故此可知AB=6,在Rt△ABC中,由勾股定理得:AC2=40,從而可得到AC2+AH2=CH2 , 由勾股定理的逆定理可知AC⊥AH,故此可知AH是圓O的切線;(2)連接DE、BE.由弦切角定理可知∠ABD=∠HAD,由D是 的中點(diǎn),可證明∠CED=∠EBD,由同弧所對(duì)的圓周角相等可知∠ABE=∠ADE,結(jié)合三角形的外角的性質(zhì)可證明:∠HAF=∠AFH,故此AH=HF;(3)由切割線定理可求得EH= ,由(2)可知AF=FH= ,從而得到EF=FH﹣EH=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的圓柱形排水管的截面半徑為10cm,截面中有水部分弓形高為5cm,則水面寬AB為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:已知△ABC中,∠ABC=∠ACB=α,點(diǎn)D是AB邊上任意一點(diǎn),連結(jié)CD,在CD的上測(cè)作以CD為底邊,α為底角的等腰△CDE,連結(jié)AE,試探究BD與AE的數(shù)量關(guān)系.
(1)嘗試探究如圖1,當(dāng)α=60°時(shí),小聰同學(xué)猜想有BD=AE,以下是他的思路呈現(xiàn).請(qǐng)你根據(jù)他的思路把這個(gè)證明過程完整地表達(dá)出來;


(2)特例再探如圖2,當(dāng)α=45°時(shí),請(qǐng)你判斷線段BD與AE之間的數(shù)量關(guān)系,并進(jìn)行證明;

(3)問題解決如圖3,當(dāng)α為任意銳角時(shí),請(qǐng)直接寫出線段BD與AE的數(shù)量關(guān)系是 . (用含α的式子表示,其中0°<α<90°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上有3個(gè)點(diǎn)的坐標(biāo):A(0,﹣3),B(3,0),C(﹣1,﹣4).
(1)在A,B,C三個(gè)點(diǎn)中任取一個(gè)點(diǎn),這個(gè)點(diǎn)既在直線y1=x﹣3上又在拋物線上y2=x2﹣2x﹣3上的概率是多少?
(2)從A,B,C三個(gè)點(diǎn)中任取兩個(gè)點(diǎn),求兩點(diǎn)都落在拋物線y2=x2﹣2x﹣3上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB,點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以AB為一邊的直角△ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且△ABC的面積為3.
(2)在方格紙中將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后△DEC(點(diǎn)A與點(diǎn)D對(duì)應(yīng),點(diǎn)B與點(diǎn)E對(duì)應(yīng)),請(qǐng)直接寫出點(diǎn)A繞著點(diǎn)C旋轉(zhuǎn)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=4 ,點(diǎn)P在菱形內(nèi),若PB=PD=4,則∠PDC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明晚上由路燈A下的點(diǎn)B處走到點(diǎn)C處時(shí),測(cè)得自身影子CD的長(zhǎng)為1米,他繼續(xù)往前走3米到達(dá)點(diǎn)E處(即CE=3米),測(cè)得自己影子EF的長(zhǎng)為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

同步練習(xí)冊(cè)答案