【題目】已知的二次函數(shù).

當(dāng)取何值時(shí),該二次函數(shù)的圖象開口向下?

的條件下

當(dāng)取何值時(shí),??

當(dāng)時(shí),求的取值范圍;

當(dāng)一時(shí),求的取值范圍.

【答案】 ;①當(dāng)時(shí),,不存在的情況;②;③;

【解析】

(1)先根據(jù)二次函數(shù)的定義及性質(zhì)列出關(guān)于m的不等式組,求出m的值即可;

(2)①根據(jù)(1)中m的值得出拋物線的解析式,畫出函數(shù)圖象,利用函數(shù)圖象即可得出結(jié)論;

②求出x=-2x=3時(shí)y的對(duì)應(yīng)值,進(jìn)而可得出結(jié)論;

③求出y=-4y=-1時(shí)x的對(duì)應(yīng)值,進(jìn)而可得出結(jié)論.

的二次函數(shù),該二次函數(shù)的圖象開口向下,

解得;

①∵,

∴拋物線的解析式為,

∴函數(shù)圖象如圖所示;

由函數(shù)圖象可知,當(dāng)時(shí),,不存在的情況;

②∵當(dāng)時(shí),,當(dāng)時(shí),,而時(shí),的最大值為;

③∵時(shí),,當(dāng),,

;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,、三邊的長分別為、、,求這個(gè)三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計(jì)算出它的面積.

1)請(qǐng)你將的面積直接填寫在橫線上.__________________

2)我們把上述求面積的方法叫做構(gòu)圖法.若三邊的長分別為、、),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為)畫出相應(yīng)的,并求出它的面積.

3 ABC三邊的長分別為、、 (m0,n0,且m≠n),請(qǐng)利用圖③的長方形網(wǎng)格試運(yùn)用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠設(shè)計(jì)了一款工藝品,每件成本元,為了合理定價(jià),現(xiàn)投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價(jià)是元時(shí),每天的銷售量是件,若銷售單價(jià)每降低元,每天就可多售出件,但要求銷售單價(jià)不得低于元.如果降價(jià)后銷售這款工藝品每天能盈利元,那么此時(shí)銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)的圖象,下列結(jié)論中:;②;③;④;⑤.正確的個(gè)數(shù)是(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少________個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程

若方程有兩個(gè)有理數(shù)根,求整數(shù)的值

滿足不等式,試討論方程根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)OABC角平分線的交點(diǎn),過點(diǎn)OMNBC分別與AB,AC相交于點(diǎn)M,N,若,,,則AMN的周長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°

1)在斜邊AB上確定一點(diǎn)E,使點(diǎn)E到點(diǎn)B距離和點(diǎn)EAC的距離相等;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)

2)在(1)的條件下,若BC6,AC8,點(diǎn)EAC的距離為ED,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在紙板中,,,,上一點(diǎn),過點(diǎn)沿直線剪下一個(gè)與相似的小三角形紙板,如果有種不同的剪法,那么長的取值范圍是________

查看答案和解析>>

同步練習(xí)冊答案