【題目】某工廠設計了一款工藝品,每件成本元,為了合理定價,現(xiàn)投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是元時,每天的銷售量是件,若銷售單價每降低元,每天就可多售出件,但要求銷售單價不得低于元.如果降價后銷售這款工藝品每天能盈利元,那么此時銷售單價為多少元?

【答案】此時銷售單價應定為75元.

【解析】試題分析:設降價x元,利用約定的變化,降價后單價是80-40-x,降價后銷量是50+5x,乘積是利潤,得一元二次方程.

試題解析:

設降價x元后銷售這款工藝品每天能盈利3000.

根據(jù)題意可得 .

解這個方程得: (不合題意,舍去) .

x10時,80x70>65

x20時,80x60<65(不符合題意,舍去)

答:此時銷售單價應定為75.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中, , 兩點的坐標分別為, ,連接,若以點 , 為頂點的三角形是等腰直角三角形,則點坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,C、D是AB三等分點,AB分別交OC、OD于點E、F,求證:AE=BF=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E、F分別是ABCD上的點,DE、AF分別交BC于點G、H, AB∥CD,∠A∠D,試說明:(1AF∥ED;2∠BED∠A;(3) ∠1∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x、y的方程組

(1)當a滿足22a+3﹣22a+1=96時,求方程組的解;

(2)當程組的解滿足x+y=16時,求a的值;

(3)試說明:不論a取什么實數(shù),x的值始終為正數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,直線l經(jīng)過點O,點A(0,6),經(jīng)過點A、O、B三點的⊙P與直線l相交于點C(7,7),且CA=CB.

⑴ 求點B的坐標;

⑵ 如圖2,將△AOB繞點B按順時針方向旋轉(zhuǎn)90°得到△A′O′B.判斷直線P的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,點F 是CD延長線上的一點,且AD平分∠BDF,AE⊥CD于點E.

⑴ 求證:AB=AC.

⑵ 若BD=11,DE=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點M,

(1)求正比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;

(3)求ΔMOP的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知坐標系中點A2,-1),B7,-1),C3-3).

1)判定ABC的形狀;

2)設ABC關于x軸的對稱圖形是A1B1C1,若把A1B1C1的各頂點的橫坐標都加2.縱坐標不變,則A1B1C1的位置發(fā)生什么變化?若最終位置是A2B2C2,求C2點的坐標;

3試問在x軸上是否存在一點P,使PC-PB最大,若存在,求出PC-PB的最大值及P點坐標;若不存在,說明理由

查看答案和解析>>

同步練習冊答案