【題目】絕對值等于其相反數(shù)的數(shù)一定是(
A.負數(shù)
B.正數(shù)
C.負數(shù)或零
D.正數(shù)或零

【答案】C
【解析】我們知道負數(shù)的絕對值等于它的相反數(shù),零的絕對值還是零,故答案選擇C.
【考點精析】關于本題考查的相反數(shù)和絕對值,需要了解只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;相反數(shù)的和為0;a+b=0 :a、b互為相反數(shù);正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】絕對值等于它本身的數(shù)有(
A.0個
B.1個
C.2個
D.無數(shù)個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】絕對值等于5的數(shù)是( )
A.5
B.-5
C.5或-5
D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,不成立的是(  )

A.cos60°2sin30°B.sin15°cos75°

C.tan30°tan60°1D.sin230°+cos230°1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉,旋轉角為α(0°α<180°

(1)當BAC=60°時,將BP旋轉到圖2位置,點D在射線BP上.若CDP=120°,則ACD ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關系是 ;

(2)當BAC=120°時,將BP旋轉到圖3位置,點D在射線BP上,若CDP=60°,求證:BD﹣CD=AD;

(3)將圖3中的BP繼續(xù)旋轉,當30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若CDP=120°,請直接寫出線段BD、CD與AD之間的數(shù)量關系(不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|2|+π+201902tan45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AOB與其內部任意一點P,若過點P畫一條直線與OA平行,那么這樣的直線( )

A、有且只有一條 B、有兩條 C、有無數(shù)條 D、不存在

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是正方形,等腰直角AEF的直角頂點E在直線BC上(不與點B,C重合),F(xiàn)MAD,交射線AD于點M.

(1)當點E在邊BC上,點M在邊AD的延長線上時,如圖①,求證:AB+BE=AM;

(提示:延長MF,交邊BC的延長線于點H.)

(2)當點E在邊CB的延長線上,點M在邊AD上時,如圖②;當點E在邊BC的延長線上,點M在邊AD上時,如圖③.請分別寫出線段AB,BE,AM之間的數(shù)量關系,不需要證明;

(3)在(1),(2)的條件下,若BE=,AFM=15°,則AM=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.

查看答案和解析>>

同步練習冊答案