【題目】如圖,在△ABC中,OA=OB=6,∠O=120°,以點O為圓心的⊙O和底邊AB相切于點C,則陰影部分的面積為 .
【答案】9 ﹣3π
【解析】解:連接OC,
∵AB為圓O的切線,
∴OC⊥AB,
∵OA=OB=6,
∴∠AOC=∠BOC= ∠AOB=60°,
∴∠A=∠B=30°,AC=BC= =3 ,
∴OC= 0A=3,
則S陰影= ABOC﹣S扇形= ×6 ×3﹣ =9 ﹣3π.
所以答案是:9 ﹣3π.
【考點精析】關(guān)于本題考查的切線的性質(zhì)定理和扇形面積計算公式,需要了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,∠BAC 和∠ACB 的平分線相交于點D,∠ADC=125°,那么∠CAB 的大小是_________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC經(jīng)過一次平移到△DFE的位置,請回答下列問題:
(1)點C的對應(yīng)點是點__________,∠D=__________,BC=__________;
(2)連接CE,那么平移的方向就是__________的方向,平移的距離就是線段__________的長度;
(3)連接AD,BF,BE,與線段CE相等的線段有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點E為矩形ABCD邊AD的中點,在矩形ABCD的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員P從點B出發(fā),沿著B﹣E﹣D的路線勻速行進,到達(dá)點D.設(shè)運動員P的運動時間為t,到監(jiān)測點的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源監(jiān)測點為( )
A.A點
B.B點
C.C點
D.D點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念
如圖1,在中,,,請寫出圖中兩對“等角三角形”概念應(yīng)用
如圖2,在中,CD為角平分線,,.
求證:CD為的等角分割線.
在中,,CD是的等角分割線,直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF、BG、DH 都垂直于 FH,AE⊥AB 且 AE=AB,BC⊥CD 且 BC=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計算圖中陰影部分的面積 S 是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,茬四邊形ABCD中,AD∥BC,E是BC的中點,AC平分∠BCD,且AC⊥AB,接DE,交AC于F.
(1)求證:AD=CE;
(2)若∠B=60°,試確定四邊形ABED是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是AC和BC中點.
(1)若點C恰好是AB的中點,則DE=_______cm;
(2)若AC=4cm,求DE的長;
(3)試說明無論AC取何值(不超過12cm),DE的長不變;
(4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關(guān).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com