如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.
(1)證明:連接OD.
因為D是BC的中點,O是AB的中點,
∴ODAC,
∴∠CED=∠ODE.
∵DE⊥AC,
∴∠CED=∠ODE=90°.
∴OD⊥DE,OD是圓的半徑,
∴DE是⊙O的切線.

(2)證明:連接AD,
∵ODAC,∴∠C=∠ODB=30°,
∵AB是⊙O的直徑,∴∠ADB=90°,
∴∠ADC=90°,
CD=
3
,
∴∠ADO=60°,AD=1,
∴AD=OD=OA=1.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點M(-l,0)為圓心的圓與y軸,x軸分別交于點A、B、C、D,直線y=-
3
3
x-
5
3
3
與⊙M相切于點H,交x軸于點E,交y軸于點F.
(1)求⊙M的半徑;

(2)如圖,弦HQ交x軸于點P,且PD:PH=4:
7
,求點P的坐標;

(3)如圖,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點G,連接AG.過點M作MN⊥x軸交BK于N.是否存在這樣的點K,使得AG=MK?若存在,請求出GN的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

矩形ABCD中,AB=8,BC=6,如果圓A是以點A為圓心,9為半徑的圓,那么下列判斷正確的是( 。
A.點B、C均在圓A外
B.點B在圓A外、點C在圓A內(nèi)
C.點B在圓A內(nèi)、點C在圓A外
D.點B、C均在圓A內(nèi)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

矩形的兩鄰邊長分別為2.5和5,若以較長一邊為直徑作半圓,則矩形的各邊與半圓相切的線段最多有(  )
A.0條B.1條C.2條D.3條

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,半徑為6的⊙M與x軸相切,與y軸相交于A、B兩點,OA=AB,則圓心M的坐標為( 。
A.(-6,6)B.(-4,6)C.(-2
10
,6)
D.(-4
2
,6)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,直線AD與⊙O相切于點A,點C在⊙O著,∠DAC=∠ACD,直線DC與AB的延長線交于點E.AF⊥ED于點F,交⊙O于點G.
(k)求證:DE是⊙O的切線;
(2)已知⊙O的半徑是6cm,EC=xcm,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是AB延長線上一點,且BC=OB,CE與⊙O交于點D,過點A作AE⊥CE,垂足為E,連接AD,∠DAC=∠C.
(Ⅰ)求證:直線CE是⊙O的切線.
(Ⅱ)求
CD
DE
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在⊙O中,AB為直徑,半徑OE⊥AB,M為半圓上任意一點,過M作⊙O的切線交OE的延長線與P,過A作弦ACMP,連MB、BC,BM交OP于N點.
(1)求證:MP=PN;
(2)已知AC=4,PE=1,求sin∠ABC的值.

查看答案和解析>>

同步練習冊答案