【題目】如圖,在平面直角坐標(biāo)系中,等邊三角形OAB的頂點(diǎn)A的坐標(biāo)為(5,0),頂點(diǎn)B在第一象限,函數(shù)y=(x>0)的圖象分別交邊OA、AB于點(diǎn)C、D.若OC=2AD,則k=_____
【答案】4
【解析】
作CE⊥x軸于點(diǎn)E,DF⊥x軸于點(diǎn)F, CE=2DF;設(shè)OE為a,則CE=;由反比例函數(shù)k的幾何意義可知△COE與△AOD面積相等,則因OC=2AD可得OF=2a;再由C和D點(diǎn)均在反比例函數(shù)上可求解k.
解:作CE⊥x軸于點(diǎn)E,DF⊥x軸于點(diǎn)F,
設(shè)OE為a,由題意可知△AOB為等邊三角形可得CE=,則DF=,BF=;由反比例函數(shù)k的幾何意義可知△COE與△AOD面積相等,則由三角形面積公式及CE=2DF可得OF=2OE=2a;由OB=5可得OF+BF=2a+=5,解得a=2,則k=2×2=4.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, AD 為△ ABC 的中線, BE 為△ ABD 的中線.
(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度數(shù);
(2)作△ BED 的邊 BD 邊上的高;
(3)若△ ABC 的面積為 20, BD=2.5,求△ BDE 中 BD 邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),直線經(jīng)過點(diǎn),且分別交軸、軸于、兩點(diǎn).
(1)求兩點(diǎn)坐標(biāo);
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月,振華中學(xué)舉行了迎國(guó)慶中華傳統(tǒng)文化節(jié)活動(dòng).本次文化節(jié)共有五個(gè)活動(dòng):書法比賽;國(guó)畫競(jìng)技;詩(shī)歌朗誦;漢字大賽;古典樂器演奏.活動(dòng)結(jié)束后,某班數(shù)學(xué)興趣小組開展了“我最喜愛的活動(dòng)”的抽樣調(diào)查(每人只選一項(xiàng)),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)此次催記抽取的初三學(xué)生共 人, ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)初三年級(jí)準(zhǔn)備在五名優(yōu)秀的書法比賽選手中任意選擇兩人參加學(xué)校的最終決賽,這五名選手中有三名男生和兩名女生,用樹狀圖或列表法求選出的兩名選手正好是一男一女的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的邊BC上一點(diǎn),點(diǎn)M在BC的延長(zhǎng)線上,若AP=PE且∠APE為直角.求證:CE平分∠DCM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別從丙、丁兩地同時(shí)出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達(dá)丁地后,乙繼續(xù)前行.設(shè)出發(fā)后,兩人相距,圖中折線表示從兩人出發(fā)至乙到達(dá)丙地的過程中與之間的函數(shù)關(guān)系.根據(jù)圖中信息,求:
(1)點(diǎn)的坐標(biāo),并說(shuō)明它的實(shí)際意義;
(2)甲、乙兩人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)為x1、x2,其中﹣2<x1<﹣1、0<x2<1下列結(jié)論:①4a﹣2b+c<0②2a﹣b<0③abc>0④b2+8a>4ac正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了這15人某月的加工零件數(shù)如下:
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件的平均數(shù)、中位數(shù)和眾數(shù);
(2)生產(chǎn)部負(fù)責(zé)人要定出合理的每人每月生產(chǎn)定額,你認(rèn)為應(yīng)該定為多少件合適?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com