【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(﹣1,0),B(4,0),C(0,2)三點.
(1)求該二次函數(shù)的解析式;
(2)設(shè)點D是在x軸上方的二次函數(shù)圖象上的點,且△DAB的面積為5,求出所有滿足條件的點D的坐標;
(3)能否在拋物線上找點P,使∠APB=90°?若能,請直接寫出所有滿足條件的點P;若不能,請說明理由.
【答案】(1);(2)點D的坐標為(0,2)或(3,2);(3)能,滿足條件的點P的坐標為(0,2)或(3,2).
【解析】
(1)根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出二次函數(shù)的解析式;
(2)設(shè)點D的縱坐標為m(m>0),根據(jù)三角形的面積公式結(jié)合△DAB的面積為5,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,再利用二次函數(shù)圖象上點的坐標特征即可求出點D的坐標;
(3)假設(shè)成立,等點P與點C重合時,可利用勾股定理求出AP、BP的長度,由AP2+BP2=AB2可得出此時∠APB=90°,再利用二次函數(shù)圖象的對稱性即可找出點P的另一坐標,此題得解.
解:(1)∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(﹣1,0)、B(4,0)、C(0,2)三點,
∴,解得:,
∴該二次函數(shù)的解析式為.
(2)設(shè)點D的縱坐標為m(m>0),
則,
∴m=2.
當y=2時,有,
解得:x1=0,x2=3,
∴滿足條件的點D的坐標為(0,2)或(3,2).
(3)假設(shè)能,當點P與點C重合時,
有,
∵,即AP2+BP2=AB2,
∴∠APB=90°,
∴假設(shè)成立,點P的坐標為(0,2).
由對稱性可知:當點P的坐標為(3,2)時,∠APB=90°.
故滿足條件的點P的坐標為(0,2)或(3,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnCn均為等腰直角三角形,且∠C1=∠C2=∠C3=…=∠Cn=90°,點A1,A2,A3,…,An和點B1,B2,B3,…,Bn分別在正比例函數(shù)y=x和y=﹣x的圖象上,且點A1,A2,A3,…,An的橫坐標分別為1,2,3…n,線段A1B1,A2B2,A3B3,…,AnBn均與y軸平行.按照圖中所反映的規(guī)律,則△AnBnCn的頂點Cn的坐標是____.(其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點O.E,F(xiàn)是AC上的兩點,并且AE=CF,連接DE,BF.
(1)求證:△DOE≌△BOF;
(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x軸上,將Rt△AOB繞點O順時針旋轉(zhuǎn)至△RtA'OB',其中點B'落在反比例函數(shù)y=﹣的圖象上,OA'交反比例函數(shù)y=的圖象于點C,且OC=2CA',則k的值為( 。
A. 4 B. C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若A(-3,y1)、B(-1,y2)、C(1,y3)三點都在反比例函數(shù)y=(k>0)的圖象上,則y1、y2、y3的大小關(guān)系是( )
A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師從學校出發(fā),到距學校的某商場去給學生買獎品,他先步行了后,換騎上了共享單車,到達商場時,全程總共剛好花了.已知王老師騎共享單車的平均速度是步行速度的3倍(轉(zhuǎn)換出行方式時,所需時間忽略不計).
(1)求王老師步行和騎共享單車的平均速度分別為多少?
(2)買完獎品后,王老師原路返回,為按時上班,路上所花時間最多只剩10分鐘,若王老師仍采取先步行,后換騎共享單車的方式返回,問:他最多可步行多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,菱形OABC的邊長為2,點A在第一象限,點C在x軸正半軸上,∠AOC=60°,若將菱形OABC繞點O順時針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點B的對應(yīng)點B′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點D,點E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線.
(2)如圖②,當∠ABC=90°時,線段DE與BC有什么數(shù)量關(guān)系?請說明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com