【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線.
(2)如圖②,當(dāng)∠ABC=90°時(shí),線段DE與BC有什么數(shù)量關(guān)系?請(qǐng)說明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長.
【答案】(1)見解析;(2)DE=BC,見解析;(3)4
【解析】
(1)先判斷出∠BDC=90°,再判斷出∠ABD=∠ODB,即可得出結(jié)論;
(2)先判斷出BE=DE,再判斷出CE=DE,即可得出結(jié)論;
(3)先利用三角函數(shù)求出AB=10,AD=6,再用勾股定理求出BD=8,即可得出結(jié)論.
解:(1)證明:如圖①,連接OD.
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠CDE+∠BDE=∠BDC=90°.
∵∠CDE=∠ABD,
∴∠ABD+∠BDE=90°.
∵OB=OD,
∴∠ABD=∠ODB,
∴∠ODB+∠BDE=90°,
即∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切線.
(2)DE=BC.
理由如下:由(1)知∠ODE=90°,
∴∠ODB+∠BDE=90°.
∵∠ABC=90°,
∴∠OBD+∠DBE=90°.
∵OB=OD,
∴∠OBD=∠ODB,
∴∠DBE=∠BDE,
∴BE=DE.
∵∠ABC=90°,
∴∠C+∠A=90°.
∵∠ABD+∠A=90°,
∴∠C=∠ABD.
∵∠CDE=∠ABD,
∴∠C=∠CDE,
∴DE=CE,
∴BE=DE=CE.
∴DE=BC.
(3)∵∠CDE=∠ABD,
∴sin∠CDE=sin∠ABD=.
在Rt△ABD中,
∵sin∠ABD==,AB=10,
∴AD=AB=×10=6,
∴BD===8.
在Rt△BDC中,∠BDC=90°,CD=10﹣6=4,
∴BC===4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市將開展以“走進(jìn)中國數(shù)學(xué)史”為主題的知識(shí)凳賽活動(dòng),紅樹林學(xué)校對(duì)本校100名參加選拔賽的同學(xué)的成績按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
成績等級(jí) | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.04 |
B | m | 0.51 |
C | n | |
D | ||
合計(jì) | 100 | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)”所對(duì)應(yīng)心角的度數(shù);
(3)成績等級(jí)為A的4名同學(xué)中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全市比賽,請(qǐng)用樹狀圖法或者列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果基地為了選出適應(yīng)市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個(gè)品種的小西紅柿秧苗各 300 株分別種植在甲、乙兩個(gè)大棚. 對(duì)于市場最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進(jìn)行了抽樣調(diào)查,從甲、乙兩個(gè)大棚各收集了 24 株秧苗上的小西紅柿的個(gè)數(shù),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析。
下面給出了部分信息:(說明:45 個(gè)以下為產(chǎn)量不合格,45 個(gè)及以上為產(chǎn)量合格,其中 45~65 個(gè)為產(chǎn)量良好,65~85 個(gè)為產(chǎn)量優(yōu)秀)
a.補(bǔ)全下面乙組數(shù)據(jù)的頻數(shù)分布直方圖(數(shù)據(jù)分成 6 組: 25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85):
b.乙組數(shù)據(jù)在產(chǎn)量良好(45≤x<65)這兩組的具體數(shù)據(jù)為: 46 46 47 47 48 48 55 57 57 57 58 61
c.數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 52.25 | 51 | 58 | 238 |
乙 | 52.25 | 57 | 210 |
(1)補(bǔ)全乙的頻數(shù)分布直方圖.
(2)寫出表中的值.
(3)根據(jù)樣本情況,估計(jì)乙大棚產(chǎn)量良好及以上的秧苗數(shù)為 株.
(4)根據(jù)抽樣調(diào)查情況,可以推斷出 大棚的小西紅柿秧苗品種更適應(yīng)市場需求,寫出理由.(至少從兩個(gè)不同的角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B的坐標(biāo)是(4,4),作BA⊥x軸于點(diǎn)A,作BC⊥y軸于點(diǎn)C,反比例函數(shù)(k>0)的圖象經(jīng)過BC的中點(diǎn)E,與AB交于點(diǎn)F,分別連接OE、CF,OE與CF交于點(diǎn)M,連接AM.
(1)求反比例函數(shù)的函數(shù)解析式及點(diǎn)F的坐標(biāo);
(2)你認(rèn)為線段OE與CF有何位置關(guān)系?請(qǐng)說明你的理由.
(3)求證:AM=AO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長是4,點(diǎn)P是AD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點(diǎn),∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O,D為⊙O上一點(diǎn),連接AD、BD、CD,且BD=AB
(1)求證:∠ABD=2∠BDC;
(2)若D為弧AC的中點(diǎn),求tan∠BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形的,邊上分別任取一點(diǎn),,且,、相交于點(diǎn).下列四個(gè)結(jié)論:①若,則;②若,,則;③;④若,則的最小值為,其中正確的是( )
A.①②④B.①③④C.②③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交于點(diǎn)F,連接CF.求證:∠AFE=∠CFD.
(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點(diǎn).
①用直尺和圓規(guī)在GN邊上求作點(diǎn)Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);
②在①的條件下,如果∠G=60°,那么Q是GN的中點(diǎn)嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com