【題目】如圖,在矩形中,點為對角線的中點,過點于點,交于點,連接,

(1)求證:四邊形是菱形;

(2)連接,若,,求的長.

【答案】1)見解析 2

【解析】

1)由矩形的性質(zhì)可得∠ACB=DAC,然后利用“ASA”證明△AOF和△COE全等,根據(jù)全等三角形對應邊相等可得OE=OF,即可證四邊形AECF是菱形;

2)連接BD,,根據(jù)平行四邊形的性質(zhì)可得AF=CF=10,用勾股定理求得FD=6,在△BDC中,∠DCB=90°,用勾股定理求出BD的值,即可解答.

(1)∵四邊形ABCD是矩形,

ADBC,

∴∠ACB=DAC,

OAC的中點,

AO=CO,

在△AOF和△COE中,

∴△AOF≌△COE(ASA),

OE=OF,且AO=CO,

∴四邊形AECF是平行四邊形,

又∵EFAC,

∴四邊形AECF是菱形;

2)連接BD

四邊形AFCE是平行四邊形

AF=CF=10

CDF=90°

CF=10,CD=AB=8

FD=6

AD=AF+DF=6+10=16

DAB=90°

==

BO=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點在邊上(點與點、不重合),過點,與邊相交于點,與邊的延長線相交于點

1有什么樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論:____________________

2、、的數(shù)量之間具有怎樣的關(guān)系?并證明你所得到的結(jié)論.

3)如果正方形的邊長是1,直接寫出點到直線的距離.

解:(1的數(shù)量關(guān)系:____________________

2、的數(shù)量之間的關(guān)系是 .

證明:

3)點到直線的距離是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象過點C0,1),頂點為Q2,3,Dx軸正半軸上,線段OD=OC.

1)求拋物線的解析式;

2)拋物線上是否存在點M,使得△CDM是以CD為直角邊的直角三角形?若存在,請求出M點的坐標;若不存在,請說明理由;

3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,連接QE.若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘的畢達哥拉斯學派由古希臘哲學家畢達哥拉斯所創(chuàng)立,畢達哥拉斯學派認為數(shù)是萬物的本原,事物的性質(zhì)是由某種數(shù)量關(guān)系決定的,如他們研究各種多邊形數(shù):記第nk邊形數(shù)N(n,k)=n2n(n≥1,k≥3,kn都為整數(shù)),

如第1個三角形數(shù)N(1,3)=×12×1=1;

2個三角形數(shù)N(2,3)=×22×2=3;

3個四邊形數(shù)N(3,4)=×32×3=9;

4個四邊形數(shù)N(4,4)=×42×4=16.

(1)N(5,3)=________,N(6,5)=________;

(2)N(m,6)N(m+2,4)10,求m的值;

(3)若記yN(6,t)-N(t,5),試求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標出了點C的對應點C′.(利用網(wǎng)格點和三角板畫圖)

(1)畫出平移后的A′B′C′.

(2)畫出AB邊上的中線線CD;

(3)在整個平移過程中,線段BC掃過的面積是___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=50°,點D,E分別是邊AC,AB上的點(不與A,B,C重合),點P是平面內(nèi)一動點(P與D,E不在同一直線上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在邊BC上運動(不與點B和點C重合),如圖(1)所示,則∠1+∠2=________

(用α的代數(shù)式表示).

(2)若點PABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫出你的結(jié)論,并說明理由.

(3)當點P在邊CB的延長線上運動時,試畫出相應圖形,標注有關(guān)字母與數(shù)字,并寫出對應的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,ABC的三個頂點的位置。如圖所示,

現(xiàn)將ABC平移后得EDF,使點B的對應點為點D,點A對應點為點E

1)畫出EDF;

2)線段BDAE有何關(guān)系? ____________;

3)連接CDBD,則四邊形ABDC的面積為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題

1-20+-14--18-13 210+-2×(-5)2

3 4

5 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生志愿服務(wù)小組在學雷鋒活動中購買了一批牛奶到江陰兒童福利院看望孤兒.如果分給每位兒童5盒牛奶,那么剩下18盒牛奶;如果分給每位兒童6盒牛奶,那么最后一位兒童分不到6盒,但至少能有3盒.則這個兒童福利院的兒童最少有________個,最多有________個.

查看答案和解析>>

同步練習冊答案