【題目】如圖,ADABC的角平分線,過(guò)點(diǎn)DAB,AC兩邊作垂線,垂足分別為E,F(xiàn),那么下列結(jié)論中不一定正確的是(  )

A. BD=CD B. DE=DF C. AE=AF D. ADE=ADF

【答案】A

【解析】

根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DE=DF,然后利用“HL”證明RtADERtADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,ADE=ADF.

解:如圖,∵ADABC的角平分線,DEAB,DFAC,
DE=DF,
RtADERtADF中,

RtADERtADF(HL),
AE=AF,ADE=ADF,即只有AB=AC時(shí),BD=CD.
綜上所述,結(jié)論錯(cuò)誤的是BD=CD.
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小河邊有兩個(gè)村莊A、B,要在河邊建一自來(lái)水廠向A村與B村供水。

(1)若要使水廠到A、B村的距離相等,則應(yīng)選擇在哪建廠? 

(2)若要使水廠到A、B村的水管最省料,應(yīng)建在什么地方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科技有限公司準(zhǔn)備購(gòu)進(jìn)AB兩種機(jī)器人來(lái)搬運(yùn)化工材料,已知購(gòu)進(jìn)A種機(jī)器人2個(gè)和B種機(jī)器人3個(gè)共需16萬(wàn)元,購(gòu)進(jìn)A種機(jī)器人3個(gè)和B種機(jī)器人2個(gè)共需14萬(wàn)元,請(qǐng)解答下列問(wèn)題:

(1)求A、B兩種機(jī)器人每個(gè)的進(jìn)價(jià);

(2)已知該公司購(gòu)買B種機(jī)器人的個(gè)數(shù)比購(gòu)買A種機(jī)器人的個(gè)數(shù)的2倍多4個(gè),如果需要購(gòu)買A、B兩種機(jī)器人的總個(gè)數(shù)不少于28個(gè),且該公司購(gòu)買的A、B兩種機(jī)器人的總費(fèi)用不超過(guò)106萬(wàn)元,那么該公司有哪幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,CFABF,BEACE,CFBE交于點(diǎn)D.有下列結(jié)論:

①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上;④CFAB的垂直平分線.以上結(jié)論正確的有(個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,E是 的中點(diǎn),連接BE、CE,則∠ABE=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在路邊安裝路燈,燈柱BC高15m,與燈桿AB的夾角ABC為120°.路燈采用錐形燈罩,照射范圍DE長(zhǎng)為18.9m,從D、E兩處測(cè)得路燈A的仰角分別為∠ADE=80.5°,∠AED=45°.求燈桿AB的長(zhǎng)度.(參考數(shù)據(jù):cos80.5°≈0.2,tan80.5°≈6.0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組對(duì)邊平行,另一組對(duì)邊相等且不平行的四邊形叫做等腰梯形.
(1)類比研究
我們?cè)趯W(xué)完平行四邊形后,知道可以從對(duì)稱性、邊、角和對(duì)角線四個(gè)角度對(duì)四邊形進(jìn)行研究,完成表.

四邊形

對(duì)稱性

對(duì)角線

平行
四邊形

兩組對(duì)邊分別平行,兩組對(duì)邊分別相等.

兩組對(duì)角
分別相等.

對(duì)角線互相平分.

等腰
梯形

軸對(duì)稱圖形,過(guò)平行的一組對(duì)邊中點(diǎn)的直線是它的對(duì)稱軸.

一組對(duì)邊平行,另一組對(duì)邊相等.


(2)演繹論證
證明等腰梯形有關(guān)角和對(duì)角線的性質(zhì).
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是對(duì)角線.
求證:
證明:
揭示關(guān)系
我們可以用圖來(lái)揭示三角形和一些特殊三角形之間的關(guān)系.

(3)請(qǐng)用類似的方法揭示四邊形、對(duì)角線相等的四邊形、平行四邊形、矩形以及等腰梯形之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)計(jì)算:(a+b)2﹣b(2a+b)

(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)DOA的中點(diǎn),點(diǎn)PBC上運(yùn)動(dòng),當(dāng)ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案