【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,D為BC的中點(diǎn),DE⊥AB,垂足為E,過點(diǎn)B作BF∥AC交DE的延長線于點(diǎn)F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說明理由.
【答案】(1)見解析;(2)△ACF是等腰三角形.見解析
【解析】
試題分析:(1)欲求證AD⊥CF,先證明∠CAG+∠ACG=90°,需證明∠CAG=∠BCF,利用三角形全等,易證.
(2)要判斷△ACF的形狀,看其邊有無關(guān)系.根據(jù)(1)的推導(dǎo),易證CF=AF,從而判斷其形狀.
(1)證明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.
又∵D為BC的中點(diǎn),
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,
,
∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.
(2)△ACF是等腰三角形,理由為:
連接AF,如圖所示,
由(1)知:△CBF≌△ACD,∴CF=AD,
∵△DBF是等腰直角三角形,且BE是∠DBF的平分線,
∴BE垂直平分DF,
∴AF=AD,
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,4),B(﹣3,4),C(﹣6,0),動點(diǎn)P從點(diǎn)A出發(fā)以1個單位/秒的速度在y軸上向下運(yùn)動,動點(diǎn)Q同時從點(diǎn)C出發(fā)以2個單位/秒的速度在x軸上向右運(yùn)動,過點(diǎn)P作PD⊥y軸,交OB于D,連接DQ.當(dāng)點(diǎn)P與點(diǎn)O重合時,兩動點(diǎn)均停止運(yùn)動.設(shè)運(yùn)動的時間為t秒.
(1)當(dāng)t=1時,求線段DP的長;
(2)連接CD,設(shè)△CDQ的面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值;
(3)運(yùn)動過程中是否存在某一時刻,使△ODQ與△ABC相似?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們可以將任意三位數(shù)表示為(其中a、b、c 分別表示百位上的數(shù)字,十位上的數(shù)字和個位上的數(shù)字,且a0)顯然,= 100a+10b+c;我們把形如和的兩個三位數(shù)稱為一對“姊妹數(shù)”(其中x、y、z是三個連續(xù)的自然數(shù))如:123和321是一對“姊妹數(shù)”,789和987是一對“姊妹數(shù)”.
(1)一對“姊妹數(shù)”的和為1110,求這對“姊妹數(shù)”.
(2)如果用x表示百位數(shù)字,試說明:任意一對“姊妹數(shù)”的和能被37整除.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點(diǎn)D,連接BI、BD、DC.下列說法中錯誤的一項(xiàng)是( 。
A.線段DB繞點(diǎn)D順時針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點(diǎn)D順時針旋轉(zhuǎn)一定能與線段DI重合
C.∠CAD繞點(diǎn)A順時針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點(diǎn)I順時針旋轉(zhuǎn)一定能與線段IB重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在六邊形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0)和B(0,b)滿足,分別過點(diǎn)A、B作x軸、y軸的垂線交于點(diǎn)C,如圖,點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著O-B-C-A-O的路線移動.
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動了6秒時,描出此時P點(diǎn)的位置,并寫出點(diǎn)P的位置坐標(biāo);
(3)連結(jié)(2)中B、P兩點(diǎn),將線段BP向下平移h個單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長分成相等的兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在平面直角坐標(biāo)系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB繞O點(diǎn)旋轉(zhuǎn)180°得到△OA1B1,請畫出△OA1B1,并寫出A1,B1的坐標(biāo);
(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.
(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com