精英家教網 > 初中數學 > 題目詳情

【題目】某公司到果園基地購買某種優(yōu)質水果,慰問醫(yī)務工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運回,已知該公司租車從基地到公司的運輸費為5000元.

(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質量x(千克)之間的函數關系式,并寫出自變量x的取值范圍.

(2)依據購買量判斷,選擇哪種購買方案付款最少?并說明理由.

【答案】(1)見解析;(2)見解析.

【解析】

試題(1)甲方案的付款=甲水果單價×購買量,乙方案的付款=乙水果單價×購買量+運輸費,根據這兩個關系分別列式即可;(2)將甲和乙的兩種方案所需的付款數進行比較,從而確定購買量的范圍.

解:(1)y=9x(x≥3000),y=8x+5000(x≥3000);

(2)y=y時,即9x=8x+5000,解得x=5000,∴當x=5000千克時,兩種付款一樣;

yy時,有解得3000≤x<5000,∴當3000≤x<5000時,選擇甲種方案付款少;

y甲>y時,有x>5000,∴當x>5000千克時,選擇乙種方案付款少.

綜上所述,當購買量小于5000千克時,選用甲方案付費少;在購買量等于5000千克時,兩種方案相同;在購買量大于5000千克時,選用乙方案付費少.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90°,D為BC的中點,DEAB,垂足為E,過點B作BFAC交DE的延長線于點F,連接CF.

(1)求證:ADCF;

(2)連接AF,試判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在矩形ABCD中,AB10 cm,BC8 cm.P從點A出發(fā),沿A→B→C→D的路線運動,到點D停止;點Q從點D出發(fā),沿D→C→B→A的路線運動,到點A停止.若點P、點Q同時出發(fā),點P的速度為每秒1 cm,點Q的速度為每秒2 cm,a秒時,點P、點Q同時改變速度,點P的速度變?yōu)槊棵?/span>b cm,點Q的速度變?yōu)槊棵?/span>d cm.圖②是點P出發(fā)x秒后APD的面積S1(cm2)與時間x()的函數關系圖象;圖③是點Q出發(fā)x秒后AQD的面積S2(cm2)與時間x()的函數關系圖象

(1)參照圖②,求a、 b及圖②中c的值;

(2)d的值;

(3)設點P離開點A的路程為y1(cm),點Q到點A還需要走的路程為y2(cm),請分別寫出改變速度后,y1、y2與出發(fā)后的運動時間x()的函數關系式,并求出點P、點Q相遇時x的值;

(4)當點Q出發(fā)__ __秒時,點Q的運動路程為25 cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1) 如圖1,在一條筆直的公路兩側,分別有A、B兩個村莊,現在要在公路l旁建一座火力發(fā)電廠,向A、B兩個村莊供電,為使所用的電線最短,請問供電廠P應健在何處?畫出圖形,不寫作法,保留作圖痕跡;

(2) 如圖2,若要向4個村莊A、B、C、D供電,供電廠P又該建在何處能使所用電線最短呢?畫出圖形,不寫作法,保留作圖痕跡;

(3)A、B、C、D如圖3,連接AC并延長到E,使CE=AC,連接BD并反向延長到F,不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】亞健康是時下社會熱門話題,進行體育鍛煉是遠離亞健康的一種重要方式,為了解某校八年級學生每天進行體育鍛煉的時間情況,隨機抽樣調查了100名初中學生,根據調查結果得到如圖所示的統(tǒng)計圖表.

類別

時間t(小時)

人數

A

t0.5

5

B

0.5t1

20

C

1t1.5

a

D

1.5t2

30

E

t2

10

請根據圖表信息解答下列問題:

(1)a=   ;

(2)補全條形統(tǒng)計圖;

(3)小王說:我每天的鍛煉時間是調查所得數據的中位數,問小王每天進行體育鍛煉的時間在什么范圍內?

(4)若把每天進行體育鍛煉的時間在1小時以上定為鍛煉達標,則被抽查學生的達標率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+6x與x軸交于點O,A,頂點為B,動點E在拋物線對稱軸上,點F在對稱軸右側拋物線上,點C在x軸正半軸上,且EF OC,連接OE,CF得四邊形OCFE.

(1)求B點坐標;
(2)當tan∠EOC= 時,顯然滿足條件的四邊形有兩個,求出相應的點F的坐標;
(3)當0<tan∠EOC<3時,對于每一個確定的tan∠EOC值,滿足條件的四邊形OCFE有兩個,當這兩個四邊形的面積之比為1:2時,求tan∠EOC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在△ABC,C=90°,AD平分∠BAC,DEABE,則下列結論:AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB;BE+AC=AB.其中正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案