【題目】如圖(1),一架長4米的梯子AB斜靠在與地面OM垂直的墻ON上,梯子與地面的傾斜角α為60°.
(1)求AO與BO的長;
(2)若梯子頂端A沿NO下滑,同時(shí)底端B沿OM向右滑行.如圖(2),當(dāng)A點(diǎn)下滑到A′點(diǎn),B點(diǎn)向右滑行到B′點(diǎn)時(shí),梯子AB的中點(diǎn)P也隨之運(yùn)動到P′點(diǎn),若∠POP′=15°,試求AA′的長.
【答案】(1) ,2;(2)
【解析】分析:(1)在中,已知斜邊,和銳角,即可根據(jù)正弦和余弦的定義求得的長;
(2)和都是等腰三角形,根據(jù)等腰三角形的兩底角相等,即可求得的度數(shù),和的度數(shù),在和中,根據(jù)三角函數(shù)即可求得OA與OA′,即可求得的長.
詳解:(1)在Rt△AOB中,
∵
又AB=4(米),
∴(米),
(米).
(2)∵點(diǎn)P和點(diǎn)P′分別是Rt△AOB的斜邊AB與Rt△A′OB′的斜邊A′B′的中點(diǎn),∴PA=PO,P′A′=P′O,
∴∠PAO=∠AOP,∠P′A′O=∠A′OP′.
∴
∵
∴
∴米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:
①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為(。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩點(diǎn)在同一條數(shù)軸上,點(diǎn)A在原點(diǎn)的左邊,到原點(diǎn)的距離為4,點(diǎn)B在原點(diǎn)右邊,點(diǎn)A 到B點(diǎn)的距離為16.
(1)求A,B兩點(diǎn)所表示的數(shù):
(2)若A,B兩點(diǎn)分別以每秒1個(gè)單位長度和3個(gè)單位長度的速度同時(shí)相向移動,在點(diǎn)C相遇,求點(diǎn)C表示的數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4.翻折∠C,使點(diǎn)C落在斜邊上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).若△CEF與△ABC相似,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中如圖所示,
(1)S△ABC= .
(2)x軸上是否存在點(diǎn)P,使得S△BCP=2S△ABC,若不存在,說明理由;若存在,求出P點(diǎn)的坐標(biāo).
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠ADB=30°,E為BC邊上一點(diǎn),∠AEB=45°,CF⊥BD于F.下列結(jié)論:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正確的結(jié)論有( 。
A. ①②B. ②③C. ①②④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
如圖,AB∥CD,AD∥BC,BE平分∠ABC,DF平分∠ADC.
求證:BE∥DF.
證明:∵AB∥CD,(已知)
∴∠ABC+∠C=180°.( )
又∵AD∥BC,(已知)
∴ +∠C=180°.( )
∴∠ABC=∠ADC.( )
∵BE平分∠ABC,(已知)
∴∠1=∠ABC.( )
同理,∠2=∠ADC.
∴ =∠2.
∵AD∥BC,(已知)
∴∠2=∠3.( )
∴∠1=∠3,
∴BE∥DF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=∠BOD.求證:AO=OB.
(2)如圖,AB是的直徑,PA與相切于點(diǎn)A,OP與相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com