【題目】如圖,平行四邊形ABCD的對角線AC,BD交于點(diǎn)O,△AOD是正三角形,AD=4,則平行四邊形ABCD的面積為 .
【答案】16
【解析】解:作DE⊥AC于E, ∴∠AED=90°.
∵△AOD是正三角形,
∴AD=DO=AO,AO=EO= AO,∠ADO=∠DAO=60°,
∴∠ADE=30°.
∵AD=4,
∴AE=2.
在Rt△ADE中,由勾股定理,得
DE=2 ,
∴S△AOD= ×4×2 =4 .
∵四邊形ABCD是平行四邊,
∴S△AOD=S△DOC=S△BOC=S△AOB ,
∴平行四邊形ABCD的面積=4×4 =16 .
所以答案是:16 .
【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保障我國海外維和部隊(duì)官兵的生活,現(xiàn)需通過A港口、B港口分別運(yùn)送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運(yùn)送物資到港口的費(fèi)用(元/噸)如表所示:
港口 | 運(yùn)費(fèi)(元/噸) | |
甲庫 | 乙?guī)?/span> | |
A港 | 14 | 20 |
B港 | 10 | 8 |
(1)設(shè)從甲倉庫運(yùn)送到A港口的物資為x噸,用含x的式子填寫下表:
港口 | 運(yùn)費(fèi)(元/噸) | |
甲庫 | 乙?guī)?/span> | |
A港 | x | |
B港 |
(2)求總費(fèi)用y(元)與x(箱)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)求出最低費(fèi)用,并說明費(fèi)用最低時(shí)的調(diào)配方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)29×20.18+72×20.18+13×20.18-14×20.18;
(2)1002-992+982-972+…+42-32+22-12.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次三項(xiàng)式x2-4x+3配方的結(jié)果是( 。
A.(x-2)2+7
B.(x-2)2-1
C.(x+2)2+7
D.(x+2)2-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算中,正確的是( )
A.2a2+3a2=5a4
B.(a﹣b)2=a2﹣b2
C.(a3)3=a6
D.(﹣2a2)3=﹣8a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P關(guān)于x軸的對稱點(diǎn)P1的坐標(biāo)是(2,1),那么點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)P2的坐標(biāo)是( 。
A. (﹣1,﹣2) B. (2,﹣1) C. (﹣2,﹣1) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能確定△ABC是直角三角形的條件有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄰補(bǔ)角是( )
A. 和為180°的兩個(gè)角
B. 有公共頂點(diǎn)且有一條公共邊,另一邊互為反向延長線的兩個(gè)角
C. 有一條公共邊且相等的兩個(gè)角
D. 有公共頂點(diǎn)且互補(bǔ)的兩個(gè)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠BAC、∠ABC的平分線相交于點(diǎn)D,DE⊥BC,DF⊥AC,垂足分別為E、F.問四邊形CFDE是正方形嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com