【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x 軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標(biāo)是______

【答案】

【解析】試題解析:①如圖1,當(dāng)∠POQ=OAH=30°,若以P,O,Q為頂點的三角形與AOH全等,那么A、P重合;

∵∠AOH=60°,

∴直線OAy=x,

聯(lián)立拋物線的解析式得: ,

解得: ,

A,3);

②當(dāng)∠POQ=AOH=60°,此時POQ≌△AOH,

易知∠POH=30°,則直線y=x,聯(lián)立拋物線的解析式,得:

解得: ,

P, ),那么A );

③當(dāng)∠OPQ=90°POQ=AOH=60°時,此時QOP≌△AOH;

易知∠POH=30°,則直線y=x,聯(lián)立拋物線的解析式,得: ,

解得:

P, ),

OP=QP=,

OH=OP=,AH=QP=,

A, );

④當(dāng)∠OPQ=90°,POQ=OAH=30°,此時OQP≌△AOH;

此時直線y=x,聯(lián)立拋物線的解析式,得: ,

解得: ,,

P3),

QP=2OP=2,

OH=QP=2,AH=OP=2

A2,2).

綜上可知:符合條件的點A有四個,分別為:(,3)或( )或, 或(22).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:

①當(dāng)x3時,y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正確的結(jié)論是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中已知點P(2,-1)T(t,0)x軸上的一個動點.

(1)求點P關(guān)于原點的對稱點P′的坐標(biāo);

(2)當(dāng)t取何值時P′TO是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,攔水壩的橫斷面為等腰梯形ABCD壩頂寬BC6 m,壩高為3.2 m,為了提高水壩的攔水能力需要將水壩加高2 m,并且保持壩頂寬度不變,迎水坡CD的坡度不變,但是背水坡的坡度由原來的12變成12.5(坡度是坡高與坡的水平長度的比)求加高后的壩底HD的長為多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB1EBC上一點,將DCE沿DE翻折得到DCE

(1) 如圖1,若點B恰好在DC的延長線上,且CBCD,求CE的長;

(2) 如圖2,若點A恰好在EC的延長線上,且CA2CE,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,把4個長為a,寬為b的長方形拼成如圖②所示的圖形,且a=3b,則根據(jù)這個圖形不能得到的等式是(

A.(a+b)2=4ab+(a-b)2B.4b2+4ab=(a+b)2

C.(a-b)2=16b2-4abD.(a-b)2+12a2=(a+b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C、D在數(shù)軸上的位置如圖1所示,已知AB=3,BC=2,CD=4.

(1)若點C為原點,則點A表示的數(shù)是   ;

(2)若點A、B、C、D分別表示有理數(shù)a,b,c,d,則|a﹣c|+|d﹣b|﹣|a﹣d|=   ;

(3)如圖2,點P、Q分別從A、D兩點同時出發(fā),點P沿線段AB以每秒1個單位長度的速度向右運(yùn)動,到達(dá)B點后立即按原速折返;點Q沿線段CD以每秒2個單位長度的速度向左運(yùn)動,到達(dá)C點后立即按原速折返.當(dāng)P、Q中的某點回到出發(fā)點時,兩點同時停止運(yùn)動.

①當(dāng)點停止運(yùn)動時,求點P、Q之間的距離;

②設(shè)運(yùn)動時間為t(單位:秒),則t為何值時,PQ=5?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

閱讀以下材料:

定義:兩邊分別相等且夾角互補(bǔ)的兩個三角形叫做“互補(bǔ)三角形”.

用符號語言表示為:如圖①,在△ABC與△DEF中,如果AC=DE,∠C+E=180°,BC=EF,那么△ABC與△DEF是互補(bǔ)三角形.

反之,“如果△ABC與△DEF是互補(bǔ)三角形,那么有AC=DE,∠C+E=180°,BC=EF”也是成立的.

自主探究

利用上面所學(xué)知識以及全等三角形的相關(guān)知識解決問題:

1)性質(zhì):互補(bǔ)三角形的面積相等

如圖②,已知△ABC與△DEF是互補(bǔ)三角形.

求證:△ABC與△DEF的面積相等.

證明:分別作△ABC與△DEF的邊BC,EF上的高線,則∠AGC=DHE=90°

…… (將剩余證明過程補(bǔ)充完整)

2)互補(bǔ)三角形一定不全等,請你判斷該說法是否正確,并說明理由,如果不正確,請舉出一個反例,畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB、BC兩邊),設(shè)AB=xm.

(1)若花園的面積為192m2,求x的值;

(2)若在P處有一棵樹與墻CD、AD的距離分別是13m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案