【題目】如圖,已知矩形ABCD中,AB=1,E是BC上一點,將△DCE沿DE翻折得到△DC′E.
(1) 如圖1,若點B恰好在DC′的延長線上,且C′B=C′D,求CE的長;
(2) 如圖2,若點A恰好在EC′的延長線上,且C′A=2C′E,求BE的長.
【答案】(1) ;(2) .
【解析】
(1)由折疊得到C′D=CD=1,得到BD=2,進而得到BC=,設CE=C′E=x,則BE=-x,然后在Rt△BC′E中使用勾股定理即可求解.
(2)連接DE,由折疊得∠DEC=∠DEA,又∠DEC=∠ADE,得到∠DEA=∠ADE,得到△ADE為等腰三角形,設CE= C′E=y,則AE=AD=BC=3y,得到BE=2y,在Rt△ABE中使用勾股定理即可求解.
解:(1)∵四邊形ABCD是矩形,∴CD=AB=1,∠C=90°
∵△DCE沿DE翻折得到△DC′E,∴CE=C′E,C′D=CD,∠EC′D=∠C=90°
∵C′B=C′D=C′D=CD=AB=1
∴BD=2,
在Rt△BCD中,由勾股定理可知BC=
設CE=C′E=x,則BE=-x
在Rt△BC′E中,由勾股定理有:
代入數(shù)據(jù):
解得:,即CE=
故答案為:.
(2)連接DE,如下圖所示:
由折疊得∠DEC=∠DEA,
又∵AD∥BC,∴∠ADE=∠DEC
∴∠DEA=∠ADE
∴△ADE為等腰三角形
∴AE=AD
設CE= C′E=y,則AC′=2C′E =2y
∴BC=AD=AE= AC′+ C′E =2y+y=3y,
∴BE=BC-CE=3y-y=2y
在Rt△ABE中,由勾股定理得:
代入數(shù)據(jù)得:
解得:,即BE =2y=
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負數(shù);③正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù);④非負數(shù)就是正數(shù);④不僅是有理數(shù),而且是分數(shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù).其中錯誤的說法的個數(shù)為( )
A. 7個B. 6個C. 5個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張丘建,我國南北朝時期(約公元5世紀)著名的數(shù)學家,著有《張丘建算經(jīng)》.一次宴會上,張丘建出了一道題:“現(xiàn)有一只鹿向西跑,當獵人追至處時,與鹿所在的處還差36步(古代:1里=300步);鹿突然向北跑,此時騎馬的獵人就沿著追去,追了50步至處與鹿所在的位置處還差10步(點、、在同一直線上).如果此鹿不向北轉,而繼續(xù)向西跑,獵人需要追多遠才能追上此鹿?”,已知單位時間內鹿跑的路程和獵人騎馬追趕的路程的比值是定值,請解答這個問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天早晨,小童從家跑步去體育場鍛煉,同時小鄭從體育場晨練結束回家,途中兩人相遇.小童跑到體育場后發(fā)現(xiàn)要下雨,立即按原路返回,遇到小鄭后兩人一起回到家(小童和小鄭始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與小童出發(fā)的時間x(分)之間的函數(shù)圖象.當x=_______時,小童與小鄭相距600米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=2x+4交x軸于A,交y軸于B.
(1) 直接寫出直線l向右平移2個單位得到的直線l1的解析式_______;
(2) 直接寫出直線l關于y=-x對稱的直線l2的解析式_______;
(3) 點P在直線l上,若S△OAP=2S△OBP,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在第一象限內作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x 軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過邊長為2的等邊三角形ABC的頂點C作直線l⊥ BC,然后作△ABC關于直線l對稱的△A′B′C,P為線段A′C上一動點,連接AP,PB,則AP+PB的最小值是 ( )
A.4B.3C.2D.2+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B的坐標分別為(1, 4)和(4, 4),拋物線的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側),點C的橫坐標最小值為-3,則點D的橫坐標最大值為_______。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側分別作正△ABC和正△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結論有 .(把你認為正確的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com