【題目】直角坐標(biāo)系中,已知點(diǎn)P(-2,-1),點(diǎn)T(t,0)是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′的坐標(biāo);
(2)當(dāng)t取何值時(shí),△P′TO是等腰三角形?
【答案】(1)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′的坐標(biāo)為(2,1);(2)綜上所述,符合條件的t的值為-, , ,4.
【解析】試題分析: (1)根據(jù)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱的特點(diǎn)即可得出點(diǎn)P′的坐標(biāo),(2)要分類討論,動(dòng)點(diǎn)T在原點(diǎn)左側(cè)和右側(cè)時(shí)分別進(jìn)行討論即可得出當(dāng)t取何值時(shí),△P′TO是等腰三角形.
試題解析:(1) 點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′的坐標(biāo)為(2,1).
(2)OP′=.
(a)動(dòng)點(diǎn)T在原點(diǎn)左側(cè),
當(dāng)T1O=P′O=時(shí),△P′TO是等腰三角形,
∴點(diǎn)T1(-,0),.
(b)動(dòng)點(diǎn)T在原點(diǎn)右側(cè),
①當(dāng)T2O=T2P′時(shí),△P′TO是等腰三角形,得T2(,0),
②當(dāng)T3O=P′O時(shí),△P′TO是等腰三角形,得點(diǎn)T3(,0),
③當(dāng)T4P′=P′O時(shí),△P′TO是等腰三角形,得點(diǎn)T4(4,0).
綜上所述,符合條件的t的值為-,,,4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點(diǎn)E、F分別是CD、BC的中點(diǎn),AE與DF交于點(diǎn)P,連接CP,則CP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,sin∠BOA=. 求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張丘建,我國南北朝時(shí)期(約公元5世紀(jì))著名的數(shù)學(xué)家,著有《張丘建算經(jīng)》.一次宴會(huì)上,張丘建出了一道題:“現(xiàn)有一只鹿向西跑,當(dāng)獵人追至處時(shí),與鹿所在的處還差36步(古代:1里=300步);鹿突然向北跑,此時(shí)騎馬的獵人就沿著追去,追了50步至處與鹿所在的位置處還差10步(點(diǎn)、、在同一直線上).如果此鹿不向北轉(zhuǎn),而繼續(xù)向西跑,獵人需要追多遠(yuǎn)才能追上此鹿?”,已知單位時(shí)間內(nèi)鹿跑的路程和獵人騎馬追趕的路程的比值是定值,請(qǐng)解答這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境:
如圖1,已知點(diǎn)是正方形的兩條對(duì)角線的交點(diǎn),以點(diǎn)為直角頂點(diǎn)的直角三角形的兩邊,分別過點(diǎn),,且,,.
(1)的長度為________;
操作證明:
(2)如圖2,在(1)的條件下,將按如圖放置,若,分別與,相交于點(diǎn),.請(qǐng)判斷和有怎樣的數(shù)量關(guān)系,并證明結(jié)論;
探究發(fā)現(xiàn):
(3)如圖3,在(1)的條件下,將按如圖放置,若點(diǎn)恰好在上,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天早晨,小童從家跑步去體育場鍛煉,同時(shí)小鄭從體育場晨練結(jié)束回家,途中兩人相遇.小童跑到體育場后發(fā)現(xiàn)要下雨,立即按原路返回,遇到小鄭后兩人一起回到家(小童和小鄭始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與小童出發(fā)的時(shí)間x(分)之間的函數(shù)圖象.當(dāng)x=_______時(shí),小童與小鄭相距600米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點(diǎn)A,過點(diǎn)A作AH⊥x 軸于點(diǎn)H,在拋物線y=x2(x>0)上取一點(diǎn)P,在y軸上取一點(diǎn)Q,使得以P、O、Q為頂點(diǎn)的三角形與△AOH全等,則符合條件的點(diǎn)A的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,它們可以沿著數(shù)軸左右移動(dòng),請(qǐng)回答:
(1)點(diǎn)A、B、C分別表示的數(shù)是______________________。
(2)將點(diǎn)B 向右移動(dòng)三個(gè)單位長度后到達(dá)點(diǎn)D,點(diǎn)D表示的數(shù)是_____________。
(3)移動(dòng)點(diǎn)A到達(dá)點(diǎn)E,使B、C、E三點(diǎn)的其中任意一點(diǎn)為連接另外兩點(diǎn)之間線段的中點(diǎn),請(qǐng)直接寫出所有點(diǎn)A 移動(dòng)的距離和方向。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com