【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與兩坐標(biāo)軸分別交于點A、B、C,直線y=﹣x+4經(jīng)過點B,與y軸交點為D,M(3,﹣4)是拋物線的頂點.
(1)求拋物線的解析式.
(2)已知點N在對稱軸上,且AN+DN的值最。簏cN的坐標(biāo).
(3)在(2)的條件下,若點E與點C關(guān)于對稱軸對稱,請你畫出△EMN并求它的面積.
(4)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在點P,使以A、B、N、P為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2﹣6x+5;(2)N(3,);(3)畫圖見解析,S△EMN=;(4)存在,滿足條件的點P的坐標(biāo)為(3,﹣)或(7,)或(﹣1,).
【解析】
(1)先確定出點B坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論;(2)先判斷出點N是直線BC與對稱軸的交點,即可得出結(jié)論;(3)先求出點E坐標(biāo),最后用三角形面積公式計算即可得出結(jié)論;(4)設(shè)出點P坐標(biāo),分三種情況利用用平行四邊形的兩條對角線互相平分和中點坐標(biāo)公式求解即可得出結(jié)論.
解:(1)針對于直線y=﹣x+4,
令y=0,則0=﹣x+4,
∴x=5,
∴B(5,0),
∵M(3,﹣4)是拋物線的頂點,
∴設(shè)拋物線的解析式為y=a(x﹣3)2﹣4,
∵點B(5,0)在拋物線上,
∴a(5﹣3)2﹣4=0,
∴a=1,
∴拋物線的解析式為y=(x﹣3)2﹣4=x2﹣6x+5;
(2)由(1)知,拋物線的解析式為y=(x﹣3)2﹣4,
∴拋物線的對稱軸為x=3,
∵點A,B關(guān)于拋物線對稱軸對稱,
∴直線y=﹣x+4與對稱軸x=3的交點就是滿足條件的點N,
∴當(dāng)x=3時,y=﹣×3+4=,
∴N(3,);
(3)∵點C是拋物線y=x2﹣6x+5與y軸的交點,
∴C(0,5),
∵點E與點C關(guān)于對稱軸x=3對稱,
∴E(6,5),
由(2)知,N(3,),
∵M(3,﹣4),
∴MN=﹣(﹣4)=,
∴S△EMN=MN|xE﹣xM|=××3=;
(4)設(shè)P(m,n),
∵A(1,0),B(5,0),N(3,),
當(dāng)AB為對角線時,AB與NP互相平分,
∴(1+5)=(3+m),(0+0)=(+n),
∴m=3,n=﹣,
∴P(3,﹣);
當(dāng)BN為對角線時,(1+m)=((3+5),(0+n)=(0+),
∴m=7,n=,
∴P(7,);
當(dāng)AN為對角線時,(1+3)=(5+m),(0+)=(0+n),
∴m=﹣1,n=,
∴P(﹣1,),
即:滿足條件的點P的坐標(biāo)為(3,﹣)或(7,)或(﹣1,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=x+的圖象與性質(zhì)進行了探究.
下面是小明的探究過程,請補充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是 .
(2)下表列出了y與x的幾組對應(yīng)值,請寫出m,n的值:m= ,n= ;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請完成:
①當(dāng)y=﹣時,x= .
②寫出該函數(shù)的一條性質(zhì) .
③若方程x+=t有兩個不相等的實數(shù)根,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F分別在△ABC的邊BC和AC上,點A,E關(guān)于BF對稱.點D在BF上,且AD∥EF.
(1)求證:四邊形ADEF為菱形;
(2)如果∠ABC=2∠DAE,AD=3,FC=5,求AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,AC是⊙O的直徑,AD是⊙O的切線.點E在直徑AC上,連接ED交⊙O于點B,連接AB,且AB=BD.
(1)求證:AB=BE;
(2)若⊙O的半徑長為5,AB=6,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+(m﹣1)x+m的對稱軸為x=,請你解答下列問題:
(1)m= ,拋物線與x軸的交點為 .
(2)x取什么值時,y的值隨x的增大而減?
(3)x取什么值時,y<0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑.
(1)若∠BAC=25°,求∠P的度數(shù);
(2)若∠P=60°,PA=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是半圓的直徑,圓心為為半圓上的兩個動點,且,過點C作的切線,交的延長線于點于點F.
(1)四邊形的形狀是______________________.
(2)連接,若,則當(dāng) 時四邊形為平行四邊形;若四邊形為菱形,四邊形的面積是,求直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)模擬測試中,六名學(xué)生的數(shù)學(xué)成績?nèi)缦卤硭,下列關(guān)于這組數(shù)據(jù)描述正確的是( 。
A.眾數(shù)是110B.方差是16
C.平均數(shù)是109.5D.中位數(shù)是109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ax2+bx+3與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.
(1)求直線AC及拋物線的解析式,并求出D點的坐標(biāo);
(2)若P為線段BD上的一個動點,過點P作PM⊥x軸于點M,求四邊形PMAC的面積的最大值和此時點P的坐標(biāo);
(3)若點P是x軸上一個動點,過P作直線1∥AC交拋物線于點Q,試探究:隨著P點的運動,在拋物線上是否存在點Q,使以點A、P、Q、C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com