【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),AC是⊙O的直徑.
(1)若∠BAC=25°,求∠P的度數(shù);
(2)若∠P=60°,PA=2,求AC的長.
【答案】(1)50°;(2)4.
【解析】
(1)利用切線的性質(zhì)求出∠PAB=90°﹣∠BAC=90°﹣25°=65°,根據(jù)切線長定理得到∠PBA=∠PAB=65°,再根據(jù)三角形的內(nèi)角和定理求出∠P的度數(shù);
(2)連接BC,證明△PAB是等邊三角形,求出,∠PAB=60°,由AC是⊙O的直徑得到∠ABC=90°,利用AC=求出答案.
(1)∵PA為切線,
∴OA⊥PA,
∴∠CAP=90°,
∴∠PAB=90°﹣∠BAC=90°﹣25°=65°.
∵PA,PB是⊙O的切線,
∴PA=PB,
∴∠PBA=∠PAB=65°,
∴∠P=180°﹣65°﹣65°=50°;
(2)連接BC.
∵PA,PB是⊙O的切線,
∴PA=PB,∠CAP=90°.
∵∠P=60°,
∴△PAB是等邊三角形,
∴,∠PAB=60°,
∴∠CAB=30°.
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴AC4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E是BC的中點(diǎn),連接AE與對角線BD交于點(diǎn)G,連接CG并延長,交AB于點(diǎn)F,連接DE交CF于點(diǎn)H,連接AH.以下結(jié)論:①CF⊥DE;②;③AD=AH;④GH=,其中正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個(gè)含30°角的△EDF的30°角的頂點(diǎn)D放在AB邊上,E、F分別在AC、BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在⊙O中,直徑AB=4,點(diǎn)P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,則弦PQ的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與兩坐標(biāo)軸分別交于點(diǎn)A、B、C,直線y=﹣x+4經(jīng)過點(diǎn)B,與y軸交點(diǎn)為D,M(3,﹣4)是拋物線的頂點(diǎn).
(1)求拋物線的解析式.
(2)已知點(diǎn)N在對稱軸上,且AN+DN的值最。簏c(diǎn)N的坐標(biāo).
(3)在(2)的條件下,若點(diǎn)E與點(diǎn)C關(guān)于對稱軸對稱,請你畫出△EMN并求它的面積.
(4)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以A、B、N、P為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)E為上的任意一點(diǎn),連接,將沿BE折疊,使點(diǎn)A落在點(diǎn)D處,連接,若是直角三角形,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1(1,1),將點(diǎn)A1向上平移1個(gè)單位長度,再向右平移2個(gè)單位長度得到點(diǎn)A2;將點(diǎn)A2向上平移2個(gè)單位長度,再向右平移4個(gè)單位長度得到點(diǎn)A3;將點(diǎn)A3向上平移4個(gè)單位長度,再向右平移8個(gè)單位長度得到點(diǎn)A4,…按這個(gè)規(guī)律平移下去得到點(diǎn)An(n為正整數(shù)),則點(diǎn)An的坐標(biāo)是( 。
A.(2n,2n﹣1)B.(2n﹣1,2n)
C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為挑選優(yōu)秀同學(xué)參加云南省級(jí)英語聽說能力競賽,某中學(xué)舉行了“英語單詞聽寫”競賽,每位學(xué)生聽寫單詞99個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
根據(jù)以上信息解決下列問題:
(1)本次共隨機(jī)抽查了 名學(xué)生,并補(bǔ)全頻數(shù)分布直方圖;
(2)若把每組聽寫正確的個(gè)數(shù)用這組數(shù)據(jù)的組中值代替,則被抽查學(xué)生聽寫正確的個(gè)數(shù)的平均數(shù)是多少?
(3)該校共有3000名學(xué)生,如果聽寫正確的個(gè)數(shù)少于60個(gè)定為不合格,請你估計(jì)這所學(xué)校本次競賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直線上,點(diǎn)E在AD上,連接DG,BE.
(1)證明:BE=DG;
(2)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示,判斷BE與DG的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(3)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),判斷BE與DG的數(shù)量關(guān)系和位置關(guān)系是否與(2)的結(jié)論相同,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com