【題目】如圖,在中,點E為上的任意一點,連接,將沿BE折疊,使點A落在點D處,連接,若是直角三角形,則的長為__________.
【答案】
【解析】
如圖,由題意只有∠ACD可能為90°.過點B作BT⊥CD交CD的延長線于T.由翻折可知:BD=AB=8,AE=DE,設(shè)AE=DE=x,則EC=6x,由△BTD∽△DCE,可得CD=,在Rt△CDE中,根據(jù)DE=CD+EC,構(gòu)建方程求出x即可解決問題.
解:如圖,由題意只有∠ACD可能為90°.過點B作BT⊥CD交CD的延長線于T.
由翻折可知:BD=AB=8,AE=DE,
設(shè)AE=DE=x,則EC=6x,
∵∠T=∠DCE=∠BDE=∠BAC=90°,
∴四邊形ABTC是矩形,
∴BT=AC=6,
∵∠BDT+∠TBD=90°,∠BDT+∠CDE=90°,
∴∠TBD=∠CDE,
∴△BTD∽△DCE,
∴,
∴,
∴CD=,
在Rt△CDE中,DE=CD+EC,
∴
解得x=或(舍去)
∴AE=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點E是正方形ABCD邊CD上任意點,以DE為邊作正方形DEFG,連接BF.點M是線段BF中點,射線EM與BC交于點H,連接CM.
(1)請直接寫出CM和EM的數(shù)量關(guān)系和位置關(guān)系:__________;
(2)把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)90°,此時點E、G恰好分別落在線段AD、CD上,如圖2所示,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.
(3)若DG=,AB=4.
①把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)45°,此時點F恰好落在線段CD上,連接EM,如圖3所示,其他條件不變,計算EM的長度;
②若把圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)一周,請直接寫出EM的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店用3600元按批發(fā)價購買了一批花卉.若將批發(fā)價降低10%,則可以多購買該花卉20盆.市場調(diào)查反映,該花卉每盆售價25元時,每天可賣出25盆.若調(diào)整價格,每盆花卉每漲價1元,每天要少賣出1盆.
(1)該花卉每盆批發(fā)價是多少元?
(2)若每天所得的銷售利潤為200元時,且銷量盡可能大,該花卉每盆售價是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價不超過5元,問該花卉一天最大的銷售利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園(矩形ABCD),墻長為22m,這個矩形的長AB=xm,菜園的面積為Sm2,且AB>AD.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若要圍建的菜園為100m2時,求該萊園的長.
(3)當(dāng)該菜園的長為多少m時,菜園的面積最大?最大面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑.
(1)若∠BAC=25°,求∠P的度數(shù);
(2)若∠P=60°,PA=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,已知點為線段上一點,分別以線段為直角邊作兩個等腰直角三角形,,連接,線段之間的數(shù)量關(guān)系為__;位置關(guān)系為_________.
(2)拓展研究:如圖2,把繞點C逆時針旋轉(zhuǎn),線段交于點F,則之間的關(guān)系是否仍然成立,說明理由;
(3)解決問題:如圖3,已知,連接,把線段AB繞點A旋轉(zhuǎn),若,請直接寫出線段的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣2,0)、B(4,0),與y軸交于點C,且OC=2OA.
(1)該拋物線的解析式為 ;
(2)直線y=kx+l(k>0)與y軸交于點D,與直線BC交于點M,與拋物線上直線BC上方部分交于點P,設(shè)m=,求m的最大值及此時點P的坐標(biāo);
(3)若點D、P為(2)中求出的點,點Q為x軸的一個動點,點N為坐標(biāo)平面內(nèi)一點,當(dāng)以點P、D、Q、N為頂點的四邊形為矩形時,直接寫出點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學(xué)校規(guī)定:每個學(xué)生都必須報名且只能選擇其中的一個課程.學(xué)校隨機抽查了部分學(xué)生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合統(tǒng)計圖中的信息解決下列問題:
(1)這次抽查的學(xué)生人數(shù)是多少人?
(2)將條形統(tǒng)計圖補充完整.
(3)求扇形統(tǒng)計圖中課程所對應(yīng)扇形的圓心角的度數(shù).
(4)如果該校共有1200名學(xué)生,請你估計該校選擇課程的學(xué)生約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年12月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調(diào)查的方式進行了隨機抽樣調(diào)查(每名員工必須且只能選擇一項),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.
請你根據(jù)上面的信息,解答下列問題
(1)本次共調(diào)查了_______名員工,條形統(tǒng)計圖中________;
(2)若該公司共有員工1000名,請你估計不了解防護措施的人數(shù);
(3)在調(diào)查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機抽取2名,讓其在公司群內(nèi)普及防護措施,求恰好抽中一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com