【題目】我們把正邊形()的各邊三等分,分別以居中的那條線段為一邊向外作正邊形,并去掉居中的那條線段,得到一個新的圖形叫做正邊形的擴展圖形,并將它的邊數(shù)記為,如圖,將正三角形進行上述操作后得到其擴展圖形,且.、圖分別是正五邊形、正六邊形的擴展圖形。

(1)如圖,在的正方形網格中用較粗的虛線畫有一個正方形,請在圖中用實線畫出此正方形的擴展圖形

(2)已知,則圖=_____,根據(jù)以上規(guī)律,正邊形的擴展圖形=______(用含的式子表示)

(3)已知,且,則=_____.

【答案】(1)見解析;(2)42,;(3)99.

【解析】

1)根據(jù)題目要求畫出圖形即可;

2)根據(jù),可得=42,再根據(jù)該規(guī)律找出即可;

3)根據(jù)所給的式子的規(guī)律,然后列出關于n的方程,最后再進行解答即可.

解:(1)如圖所示:

2)解:∵

,

依該規(guī)律可得:.

故答案為42n(n+1).

3)解:∵,,,...,

解得:n=99.

故答案為99.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個半徑為的圓形紙片在邊長為的等邊三角形內任意運動,則在該等邊三角形內,這個圓形紙片不能接觸到的部分的面積是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關于x的函數(shù)解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

(1)m=   ,n=   ;

(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖1,在平面直角坐標系中,點O為坐標原點,拋物線yax2+bx+5x軸交于A,點B,與y軸交于點C,過點CCDy軸交拋物線于點D,過點BBEx軸,交DC延長線于點E,連接BD,交y軸于點F,直線BD的解析式為y=﹣x+2

1)寫出點E的坐標;拋物線的解析式.

2)如圖2,點P在線段EB上從點E向點B1個單位長度/秒的速度運動,同時,點Q在線段BD上從點B向點D個單位長度/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動,當t為何值時,PQB為直角三角形?

3)如圖3,過點B的直線BG交拋物線于點G,且tanABG,點M為直線BG上方拋物線上一點,過點MMHBG,垂足為H,若HFMF,請直接寫出滿足條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形OABC的一個頂點B的坐標是(4,2),反比例函數(shù)y=x0)的圖象經過矩形的對稱中點E,且與邊BC交于點D,若過點D的直線y=mx+n將矩形OABC的面積分成35的兩部分,則此直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCO在平面直角坐標系中,AO,CO分別在y軸,x軸正半軸上,若S矩形AOCB=BO2,矩形AOCB的周長為16

1)求B點坐標;

2)點DOC延長線上,設D點橫坐標為d,連BD,將直線DBD點逆時針方向旋轉45°AOE,交BCF,連EC,設△CDE面積=S,求出Sd的函數(shù)關系式并注明自變量d的取值范圍;

3)在(2)條件下,當點EAO上時,過AED的平行線交CBG,交BDN,若BG=2CF,求S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,邊上一動點(不與點重合),以長為半徑的與邊的另一個交點為,過點于點.

與邊相切時,求的半徑;

聯(lián)結于點,設的長為的長為,求關于的函數(shù)解析式,并直接寫出的取值范圍;

的條件下,當以長為直徑的相交于邊上的點時,求相交所得的公共弦的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(2,0)B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.

查看答案和解析>>

同步練習冊答案