【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結論中:
①abc<0;②b2﹣4ac>0;③3a+c<0;④(a+c)2<b2,⑤a+b+c>0
其中正確的序號是_____.
【答案】②③④.
【解析】
由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
①拋物線對稱軸位于y軸的左側,a,b同號,即ab>0.
拋物線與y軸交于正半軸,則c>0.
所以abc>0.
故①錯誤.
②由拋物線與x軸有兩個交點可得b2﹣4ac>0.
故②正確.
③拋物線開口方向向下,則a<0.
由于對稱軸是x=﹣,且﹣1<﹣<0,
所以2a<b<0,
所以2a+a+c<b+a+c.
當x=1時,y<0,即a+b+c<0.
所以2a+a+c<b+a+c<0,即3a+c<0.
故③正確.
④根據(jù)圖象知道當x=1時,y=a+b+c<0,
根據(jù)圖象知道當x=﹣1時,y=a﹣b+c>0,
所以 (a+c)2﹣b2=(a+c+b)(a+c﹣b)<0.
所以 (a+c)2<b2.
故④正確.
⑤根據(jù)圖象知道當x=1時,y=a+b+c<0.
故⑤錯誤.
綜上所述,正確的結論是②③④.
故答案是:②③④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,點E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為( )
A. 10B. 4C. 20D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在中,C、D分別為BM、AM上的點,四邊形ABCD內(nèi)接于,連接AC,;
如圖,求證:弧弧BD;
如圖,若AB為直徑,,求值;
如圖,在的條件下,E為弧CD上一點不與C、D重合,F為AB上一點,連接EF交AC于點N,連接DN、DE,若,,,求AN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過點A作直線EF,
(1)如圖1,若AB為直徑,要使得EF是⊙O的切線,還需要添加的條件是(只須寫出兩種不同情況)① 或② .
(2)如圖2,若AB為非直徑的弦,∠CAE=∠B,試說明EF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,DC//AB,∠A=90°,AD=6cm,DC=4cm,BC的坡度i=3:4,動點P從A出發(fā)以2cm/s的速度沿AB方向向點B運動,動點Q從點B出發(fā)以3厘cm/s的速度沿B→C→D方向向點D運動,兩個動點同時出發(fā),當其中一個動點到達終點時,另一個動點也隨之停止.設動點運動的時間為t秒.
(1)求邊BC的長;
(2)當t為何值時,PC與BQ相互平分;
(3)連結PQ,設△PBQ的面積為y,探求y與t的函數(shù)關系式,求t為何值時,y有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中拋物線與x軸的正半軸交于點,交y于點C,頂點,直線AB與y軸交于點D.
求拋物線的表達式;
聯(lián)結BC,如果點P在x軸上,且與相似,求出點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過點A、P,點A(6,),點P的橫坐標是2.拋物線y=ax2+bx+c(a≠0)經(jīng)過坐標原點,且與x軸交于點B,頂點為P.
求:(1)反比例函數(shù)的解析式;
(2)拋物線的表達式及B點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com