如圖,拋物線的對(duì)稱軸是直線x=,與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,并且點(diǎn)A的坐標(biāo)為(—1,0).

(1)求拋物線的解析式;
(2)過(guò)點(diǎn)C作CD//x軸交拋物線于點(diǎn)D,連接AD交y軸于點(diǎn)E,連接AC,設(shè)△AEC的面積為S1, △DEC的面積為S2,求S1:S2的值;
(3)點(diǎn)F坐標(biāo)為(6,0),連接D,在(2)的條件下,點(diǎn)P從點(diǎn)E出發(fā),以每秒3個(gè)單位長(zhǎng)的速度沿E→C→D→F勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)F出發(fā),以每秒2個(gè)單位長(zhǎng)的速度沿F→A勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另外一點(diǎn)也隨之停止運(yùn)動(dòng).若點(diǎn)P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是直角三角形?請(qǐng)直接寫出所有符合條件的t值..

解:(1)
(2)
(3)當(dāng)時(shí),以D、P、Q為頂點(diǎn)的三角形是直角三角形。

解析試題分析:(1)由∵拋物線的對(duì)稱軸是直線x=和經(jīng)過(guò)點(diǎn)A(—1,0),得,解之即可得拋物線的解析式。
∵拋物線的對(duì)稱軸是直線x=,∴①。
又∵拋物線經(jīng)過(guò)點(diǎn)A(—1,0),∴②。
聯(lián)立①②,解得。
∴拋物線的解析式為
(2)根據(jù)相似三角形和等高三角形的性質(zhì),可得,從而,即S1:S2=。
中令x=0得,∴C(0,4)。
∵拋物線的對(duì)稱軸是直線x=,CD//x軸交拋物線于點(diǎn)D,∴D(3,4)。
又OA=1,CD=3,
∵CD//x軸,∴△AEO∽△DEC。∴③。
又∵△AEO和△AEC是兩等高三角形,∴④。
③÷④,得,即S1:S2=。
(3)分四種情況討論:
①當(dāng)點(diǎn)P在EC上運(yùn)動(dòng),∠PDQ=900時(shí),如圖1,

過(guò)點(diǎn)D作DG⊥AB于G,則CD=3,PC= 3—3t,GD=4,QG=3—2t,
由△PCD∽△QGD得,即,解得。
②當(dāng)點(diǎn)P在CD上運(yùn)動(dòng),∠PDQ=900時(shí),如圖2,

OQ=6—2t,CD=3,此時(shí),OQDC是矩形。由OQ=CD,即6—2t=3解得。
③當(dāng)點(diǎn)P在CD上運(yùn)動(dòng),∠QPD=900時(shí),如圖3,

OQ=6—2t,CP=3t—3,此時(shí),OQPC是矩形。由OQ=CP,6—2t=3t—3解得。
④當(dāng)點(diǎn)P在DF上運(yùn)動(dòng),∠QPD=900時(shí),如圖4,

由D(3,4),F(xiàn)(6,0),根據(jù)勾股定理可得DF=5。
過(guò)點(diǎn)D作DG⊥AB于G,則DF=5,GF=3, PF= 11—3t, QF=2t,
由△FPQ∽△FGD得,即,解得。
綜上所述,當(dāng)時(shí),以D、P、Q為頂點(diǎn)的三角形是直角三角形。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)     (填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).

(1)b=    ,點(diǎn)B的橫坐標(biāo)為    (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過(guò)點(diǎn)A作直線AE∥BC,與拋物線交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為
(2,0),當(dāng)C,D,E三點(diǎn)在同一直線上時(shí),求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線上的一動(dòng)點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(       ,       );
依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(       ,       );
所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是       
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長(zhǎng),直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過(guò)點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對(duì)于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖.在平面直角坐標(biāo)系中,邊長(zhǎng)為的正方形ABCD的頂點(diǎn)A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點(diǎn)E.

(1)求證:△OAD≌△EAB;
(2)求過(guò)點(diǎn)O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,其關(guān)于直線BF的對(duì)稱點(diǎn)在x軸上?若有,求出點(diǎn)P的坐標(biāo);
(4)連接OE,若點(diǎn)M是直線BF上的一動(dòng)點(diǎn),且△BMD與△OED相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點(diǎn).

(1)寫出A、B兩點(diǎn)的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點(diǎn)P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知點(diǎn)A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點(diǎn)M是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),以M為頂點(diǎn)的拋物線y=(x﹣m)2+n與線段OA交于點(diǎn)C.
①求線段AC的長(zhǎng);(用含m的式子表示)
②是否存在某一時(shí)刻,使得△ACM與△AMO相似?若存在,求出此時(shí)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案