(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.
(1)點(diǎn) (填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
(1)M;(2),當(dāng)時(shí),S的值最大;(3)存在,點(diǎn)M的坐標(biāo)為(1,0)或(2,0),理由見(jiàn)試題解析.
解析試題分析:(1)(BC÷點(diǎn)N的運(yùn)動(dòng)速度)與(OA÷點(diǎn)M的運(yùn)動(dòng)速度)可知點(diǎn)M能到達(dá)終點(diǎn).
(2)經(jīng)過(guò)t秒時(shí)可得NB=y,OM﹣2t.根據(jù)∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數(shù)關(guān)系式后根據(jù)t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
試題解析:(1)點(diǎn)M.
(2)經(jīng)過(guò)秒時(shí),NB=,OM=,則CN=,AM=,∵A(4,0),C(0,4),∴AO=CO=4,∵∠AOC=90°,∴∠BCA=∠MAQ=45°,∴QN=CN=,∴PQ=,
∴S△AMQ=AM•PQ==.∴,∴,∵,∴當(dāng)時(shí),S的值最大.
(3)存在.
設(shè)經(jīng)過(guò)秒時(shí),NB=,OM=,則CN=,AM=,∴∠BCA=∠MAQ=45°.
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高,∴PQ是底邊MA的中線,∴PQ=AP=MA,
∴,∴,∴點(diǎn)M的坐標(biāo)為(1,0).
②若∠QMA=90°,此時(shí)QM與QP重合,∴QM=QP=MA,∴,解得:,∴點(diǎn)M的坐標(biāo)為(2,0).
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與x軸交于點(diǎn)A、B,且A點(diǎn)的坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,1).
(1)求拋物線的解析式,并求出點(diǎn)B坐標(biāo);
(2)過(guò)點(diǎn)B作BD∥CA交拋物線于點(diǎn)D,連接BC、CA、AD,求四邊形ABCD的周長(zhǎng);(結(jié)果保留根號(hào))
(3)在x軸上方的拋物線上是否存在點(diǎn)P,過(guò)點(diǎn)P作PE垂直于x軸,垂足為點(diǎn)E,使以B、P、E為頂點(diǎn)的三角形與△CBD相似?若存在請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
將進(jìn)貨單價(jià)為30元的商品按40元出售時(shí),每天賣(mài)出500件。據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),如果這種商品每件漲價(jià)1元,其每天的銷(xiāo)售量就減少10件。
(1)要使得每天能賺取8000元的利潤(rùn),且盡量減少庫(kù)存,售價(jià)應(yīng)該定為多少?
(2)售價(jià)定為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(1,0),B(-3,0)兩點(diǎn),且與y軸交于點(diǎn)C.
(1) 求b,c的值。
(2)在第二象限的拋物線上,是否存在一點(diǎn)P,使得△PBC的面積最大?求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若不存在,請(qǐng)說(shuō)明理由.
(3) 如圖2,點(diǎn)E為線段BC上一個(gè)動(dòng)點(diǎn)(不與B,C重合),經(jīng)過(guò)B、E、O三點(diǎn)的圓與過(guò)點(diǎn)B且垂直于BC的直線交于點(diǎn)F,當(dāng)△OEF面積取得最小值時(shí),求點(diǎn)E坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為 ;
(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知點(diǎn)A (2,4) 和點(diǎn)B (1,0)都在拋物線上.
(1)求m、n;
(2)向右平移上述拋物線,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達(dá)式;
(3)記平移后拋物線的對(duì)稱(chēng)軸與直線AB′ 的交點(diǎn)為C,試在x軸上找一個(gè)點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線的圖象,將其向右平移兩個(gè)單位后得到圖象.
(1)求圖象所表示的拋物線的解析式:
(2)設(shè)拋物線和軸相交于點(diǎn)、點(diǎn)(點(diǎn)位于點(diǎn)的右側(cè)),頂點(diǎn)為點(diǎn),點(diǎn)位于軸負(fù)半軸上,且到軸的距離等于點(diǎn)到軸的距離的2倍,求所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
“惠民”經(jīng)銷(xiāo)店為某工廠代銷(xiāo)一種工業(yè)原料(代銷(xiāo)是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷(xiāo)售量為45噸;該經(jīng)銷(xiāo)店為提高經(jīng)營(yíng)利潤(rùn),準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷(xiāo),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷(xiāo)售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸工業(yè)原料共需支付廠家及其它費(fèi)用100元.
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷(xiāo)售量;
(2)若在“薄利多銷(xiāo)、讓利于民”的原則下,當(dāng)每噸原料售價(jià)為多少時(shí),該店的月利潤(rùn)為9000元;
(3)每噸原料售價(jià)為多少時(shí),該店的月利潤(rùn)最大,求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線的對(duì)稱(chēng)軸是直線x=,與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,并且點(diǎn)A的坐標(biāo)為(—1,0).
(1)求拋物線的解析式;
(2)過(guò)點(diǎn)C作CD//x軸交拋物線于點(diǎn)D,連接AD交y軸于點(diǎn)E,連接AC,設(shè)△AEC的面積為S1, △DEC的面積為S2,求S1:S2的值;
(3)點(diǎn)F坐標(biāo)為(6,0),連接D,在(2)的條件下,點(diǎn)P從點(diǎn)E出發(fā),以每秒3個(gè)單位長(zhǎng)的速度沿E→C→D→F勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)F出發(fā),以每秒2個(gè)單位長(zhǎng)的速度沿F→A勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另外一點(diǎn)也隨之停止運(yùn)動(dòng).若點(diǎn)P、Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是直角三角形?請(qǐng)直接寫(xiě)出所有符合條件的t值..
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com