【題目】如圖1,四邊形中,,,,是邊上的中線,過點作垂足為,交線段于點,交于點,連接.
(1)求證:;
(2)探索線段和之間的數量關系,并證明你的結論;
(3)當等于多少度時,點恰好為中點?
【答案】(1)見解析;(2),見解析;(3)105°
【解析】
(1)根據等腰直角三角形的性質得到∠DCB=∠DBC=∠CDM=∠BDM=45°,DM⊥BC,利用ASA定理證明△ABD≌△NCD;
(2)根據全等三角形的性質得到AD=ND,AB=NC,證明△FDA≌△FDN,得到AF=FN,結合圖形證明即可;
(3)連接AN,BN,根據線段垂直平分線的性質、等邊三角形的判定定理得到△ABN是等邊三角形,得到∠BAN=60°,證明△ADN是等腰直角三角形,得到∠DAN=45°,計算即可.
(1) 證明:
(2)
(3)解:如圖2,連接AN, BN,
∵CE⊥AB,E為AB中點,
∴直線CE為AB的垂直平分線,
∴AN=BN,
∵AF=FN,AD=DN,
∴直線BD為AN的垂直平分線,
∴AB=NB,
∴AB=AN= BN,
∴△ABN是等邊三角形,
∴∠BAN=60°,
∵AD//BC, DM⊥BC,
∴AD⊥DN,
∵AD=DN,
∴△ADN是等腰直角三角形 ,
∴∠DAN=45°,
∴∠BAD=60°+45°=105°.
科目:初中數學 來源: 題型:
【題目】樂樂發(fā)現等腰三角形一腰上的高與另一腰的夾角為40°,則這個等腰三角形底角的度數為( )
A.50°B.65°C.65°或25°D.50°或40°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在10×10的正方形網格中,每個小正方形的邊長為1個單位長度.△ABC的頂點都在正方形網格的格點上,且通過兩次平移(沿網格線方向作上下或左右平移)后得到△A'B'C',點C的對應點是直線上的格點C'.
(1)畫出△A'B'C';
(2)在BC上找一點P,使AP平分△ABC的面積;
(3)試在直線l上畫出所有的格點Q,使得由點A'、B'、C'、Q四點圍成的四邊形的面積為9.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,﹣3),
(1)求二次函數y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2 , 并指出她與嘉嘉抽到勾股數的可能性一樣嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上
(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;
(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com