【題目】已知:A、O、B三點在同一條直線上,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;
(3)將圖1中的三角板繞點O按5°每秒的速度沿逆時針方向旋轉(zhuǎn)一周的過程中,當直角三角板的直角邊OM所在直線恰好平分∠BOC時,時間t的值為 (直接寫結(jié)果).
【答案】(1)90°;(2)30°;(3)12秒或48秒.
【解析】
(1)依據(jù)圖形可知旋轉(zhuǎn)角=∠NOB,從而可得到問題的答案;
(2)先求得∠AOC的度數(shù),然后依據(jù)角的和差關系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM與∠NOC的差即可;
(3)可分為當OM為∠BOC的平分線和當OM的反向延長為∠BOC的平分線兩種情況,然后再求得旋轉(zhuǎn)的角度,最后,依據(jù)旋轉(zhuǎn)的時間=旋轉(zhuǎn)的角度÷旋轉(zhuǎn)的速度求解即可.
(1)由旋轉(zhuǎn)的定義可知:旋轉(zhuǎn)角=∠NOB=90°.
故答案為:90°
(2)∠AOM﹣∠NOC=30°.
理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,
∴∠AOC=60°.
∴∠NOC=60°﹣∠AON.
∵∠NOM=90°,
∴∠AOM=90°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
(3)如圖1所示:當OM為∠BOC的平分線時,
∵OM為∠BOC的平分線,
∴∠BOM=∠BOC=60°,
∴t=60°÷5°=12秒.
如圖2所示:當OM的反向延長為∠BOC的平分線時,
∵ON為為∠BOC的平分線,
∴∠BON=60°.
∴旋轉(zhuǎn)的角度=60°+180°=240°.
∴t=240°÷5°=48秒.
故答案為:12秒或48秒.
科目:初中數(shù)學 來源: 題型:
【題目】為了拉動內(nèi)需,全國各地汽車購置稅補貼活動在2009年正式開始,某經(jīng)銷商在政策出臺前一個月共售出某品牌汽車的手動型和自動型共960臺,政策出臺后的第一個月售出這兩種型號的汽車共1228臺,其中手動型和自動型汽車的銷售量分別比政策出臺前一個月增長30%和25%.
(1)在政策出臺前一個月,銷售的手動型和自動型汽車分別為多少臺?
(2)若手動型汽車每臺價格為8萬元,自動型汽車每臺價格為9萬元.根據(jù)汽車補貼政策,政府按每臺汽車價格的5%給購買汽車的用戶補貼,問政策出臺后的第一個月,政府對這1228臺汽車用戶共補貼了多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某藥物研究單位試制成功一種新藥,經(jīng)測試,如果患者按規(guī)定劑量服用,那么服藥后每毫升血液中含藥量y(微克)隨時間x(小時)之間的關系如圖所示,如果每毫升血液中的含藥量不小于20微克,那么這種藥物才能發(fā)揮作用,請根據(jù)題意回答下列問題:
(1)服藥后,大約 分鐘后,藥物發(fā)揮作用.
(2)服藥后,大約 小時,每毫升血液中含藥量最大,最大值是 微克;
(3)服藥后,藥物發(fā)揮作用的時間大約有 小時.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請猜想1+3+5+7+9+…+19=
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一組互不全等的三角形,它們的邊長均為整數(shù),每個三角形有兩條邊的長分別為5和7.
(1)請寫出其中一個三角形的第三邊的長;
(2)設組中最多有n個三角形,求n的值;
(3)當這組三角形個數(shù)最多時,從中任取一個,求該三角形周長為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=CD,分別以AB,CD為邊向外側(cè)作等邊三角形ABE和等邊三角形DCF,連接AF,DE.
(1)求證:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面積之和等于梯形ABCD的面積,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用A、B兩種機器人搬運大米,A型機器人比B型機器人每小時多搬運20袋大米,A型機器人搬運700袋大米與B型機器人搬運500袋大米所用時間相等.求A、B型機器人每小時分別搬運多少袋大米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com